18
Table 3: Mean values and standard deviation of Inequalities regarding height
and time (time period: 1991-2009; i=14467 to 21172; m < 6706)
Observational data
Filtered data
Synthesis
k I H m
Mean value
SD
m
Mean value
SD
m
Mean value
SD
1
1
6704
11:50 h:min
40,62 min
6697
11:50 h:min
40,30 min
6706
11:50 h:min
38,85 min
1
2
6704
6,54 mGZ
0,41 m
6609
6,53 mGZ
0,36 m
6706
6,54 mGZ
0,19 m
2
1
6704
18:40 h:min
44,27 min
6694
18:40 h:min
43,78 min
6706
18:40 h:min
42,76 min
2
2
6704
3,58 mGZ
0,45 m
6601
3,55 mGZ
0,39 m
6706
3,56 mGZ
0,20 m
3
1
6703
24:14 h:min
40,89 min
6696
24:14 h:min
40,67 min
6706
24:14 h:min
39,31 min
3
2
6703
6,52 mGZ
0,41 m
6597
6,51 mGZ
0,36 m
6706
6,51 mGZ
0,19 m
4
1
6705
31:05 h:min
45,00 min
6696
31:05 h:min
44,69 min
6706
31:05 h:min
43,42 min
4
2
6705
3,57 mGZ
0,45 m
6602
3,55 mGZ
0,39 m
6706
3,55 mGZ
0,20 m
e) Determination of the relevant angular velocities
The relevant angular velocities a- are Integral linear combinations
a- =as + ph + yp + SN' (3)
with a, fi,y,ô = 0, ±1, ±2,± 3, ... (for meaning and values of multiplicands see
Table 4). Choice and number of a> - In Table 5 allows for modifications. In the
long-periodic range (No. 1-6), Horn (1960) narrows down to No. 1, 4, 5 and 6.
The fact that only four basic periods are sufficient for the representation of Ine
qualities as regards height and time, whereas six are required for the exact
description of the tide-generating potential of Moon and Sun, may be surpris
ing. Horn (1948) explains why; here It can be added that the orbital period of
the perihelion of approximately 20,940 years may be discounted.