Skip to main content

Full text: 15: Wasserstandsvorhersage mittels neuronaler Netze

178 
[Ponte 92] Ponte, R.M.: The sea level response of a stratified ocean to barometric pressure 
forcing. Journal of Physical Oceanography, Vol. 22, pp. 109-113, American Meteoro 
logical Society, 1992. 
[Ponte 93] Ponte, R.M.: Variability in a homogeneous global ocean forced by barometric 
pressure. Dynamics of Atmospheres and Oceans, Vol. 18, pp. 209-234, Elsevier 
Science Publishers B.V., Amsterdam, 1993. 
[Ponte 94] Ponte, R.M.: Understanding the relation between wind- and pressure-driven sea 
level variability. Journal of Geophysical Research, Vol. 99, Nr. C4, pp.8033-8039, 
Amercan Geophysical Union, 1994. 
[Preisendorfer 88] Preisendorfer, R.W.: Principal Component Analysis in Meteorology and 
Oceanography. Elsevier, Amsterdam, 1988. 
[Press et al. 91] Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T.: Numerical 
Recipes in C. The Art of Scientific Computing, Cambridge University Press, 1991. 
[Ramacher 92] Ramacher, U.: Synapse - A Neurocomputer That Synthesizes Neural Algo 
rithms on a Parallel Systolic Engine. Journal of Parallel and Distributed Computing 
14, pp. 306-318, 1992. 
[Ramacher et al. 94] Ramacher, U.; Raab, W.; Anlauf, J.; Hachmann, U.; Weßeling, M.: 
SYNAPSE-1 — ein General-Purpose Neurocomputer. Siemens AG Proprietary Infor 
mation, 1994. 
[Rauschelbach 24] Rauschelbach, H.: Harmonische Analyse der Gezeiten des Meeres. Aus 
dem Archiv der Deutschen Seewarte, XLII. Jg., Nr.l, Hamburg, 1924. 
[Refenes et al. 93] Refenes, A.N.; Azema-Barac, M.; Chen, L.; Karoussos, S.A.: Currency 
Exchange Rate Prediction and Neural Network Design Strategies. Neural Comput. & 
Applic., Springer-Verlag London Limited, 1993. 
[Rehkugler et al. 92] Rehkugler, H.; Poddig, T.: Anwendungsperspektiven und Anwendungs 
probleme von Künstlichen Neuronalen Netzwerken. Information Management 2/92. 
[Ritter et al. 92] Ritter, H.; Martinetz, T.; Schulten, K.: Neuronale Netze. Eine Einführung in 
die Neuroinformatik selbstorganisierender Netzwerke. Addison-Wesley Publishing 
Company, 1992. 
[Rodrigues et al. 92] Rodrigues, A.J.; Young, P.C.; Tych, W.: Application of Neural Net 
works to Advanced Time Series Model Identification. IDG VSP, 1992. 
[Rumelhart et al. 86a] Rumelhart, D.E.; Hinton, G.E.; Williams, R.J.: Learning representa 
tions by back-propagating errors. Nature Vol. 232, 1986.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.