References
AWI, 2024. Infrared Based Whale Detection [WWW Document]. URL https://www.awi.de/en/sci-
ence/climate-sciences/physical-oceanography/main-research-focus/ocean-acoustics-
group/awi-ocean-acoustics-group-infrared-based-whale-detection.html (accessed 7.23.24).
Chen, X., Liu, Y., Achuthan, K., 2021. WODIS: Water Obstacle Detection Network Based on Image Seg-
mentation for Autonomous Surface Vehicles in Maritime Environments. IEEE Transactions on
Instrumentation and Measurement 70, 1-13. https://doi.org/10.1109/TIM.2021.3092070
Chen, X., Wu, X., Prasad, D.K., Wu, B., Postolache, O., Yang, Y., 2022. Pixel-Wise Ship Identification
From Maritime Images via a Semantic Segmentation Model. IEEE Sensors Journal 22, 18180-
18191. https://doi.org/10.1109/JSEN.2022.3195959
Felski, A., Zwolak, K., 2020. The Ocean-Going Autonomous Ship—Challenges and Threats. Journal of
Marine Science and Engineering 8. https://doi.org/10.3390/jmse8010041
Sao, G., Chen, Y., Feng, Z., Zhang, C., Duan, D., Li, H., Zhang, X., 2024. R-LRBPNet: A Lightweight SAR
Image Oriented Ship Detection and Classification Method. Remote Sensing 16.
https://doi.org/10.3390/rs 16091533
Huang, Y., Ren, Y., Li, X., 2024. Deep learning techniques for enhanced sea-ice types classification in
the Beaufort Sea via SAR imagery. Remote Sensing of Environment 308, 114204.
https://doi.org/10.1016/j.rse.2024.114204
lancu, B., Soloviev, V., Zelioli, L., Lilius, J., 2021. ABOships—An Inshore and Offshore Maritime Vessel
Detection Dataset with Precise Annotations. Remote Sensing 13.
https://doi.org/10.3390/rs 13050988
IMO, 2024. DEVELOPMENT OF A GOAL-BASED INSTRUMENT FOR MARITIME AUTONOMOUS SURFACE
SHIPS (MASS) (Information). International Maritime Organization.
IMO, 2023. SAR electro-optical detection aids, testing of detection effectiveness and performance by
developers and manufacturers to an agreed standard. ICAO/IMO JWG-SAR.
IMO, 2000. RESOLUTION MSC.94(72) - PERFORMANCE STANDARDS FOR NIGHT VISION EQUIPMENT
FOR HIGH-SPEED CRAFT. International Maritime Organization, London.
ISO, 2022. Information technology - Artificial intelligence — Assessment of machine learning classifica-
tion performance (Standard No. ISO/IEC TS 4213:2022). International Organization for Stand-
ardization, Geneva, CH.
ISO, 2020. ISO 16273. International Organization for Standardization.
Kim, J.-H., Kim, N., Park, Y.W., Won, C.S., 2022. Object Detection and Classification Based on YOLO-V5
with Improved Maritime Dataset. Journal of Marine Science and Engineering 10.
https://doi.org/10.3390/jmse 10030377
Koch, P., Stach, T., Constapel, M., Burmeister, H.-C., Gillert, A., Vahl, M., 2024. BAnA Studie zur Bewer-
tung von Algorithmen für nautische Anwendungen. Frauenhofer CML.
Messaoud, W., Trabelsi, R., Cabani, A., Abdelkefi, F., 2024. Maritime object detection using attention
mechanism. Signal, Image and Video Processing 18, 1833-1845.
https://doi.org/10.1007/s11760-023-02897-1
Oscar, 2024. . The Story behind the Gadget |. URL https://no-frills-sailing.com/oscar-collision-avoid-
ance-system/ (accessed 7.23.24).
Prasad, D.K., 2024. Singapore Maritime Dataset [WWW Document]. URL
https://sites.google.com/site/dilipprasad/home/singapore-maritime-dataset (accessed
7.23.24).
Prasad, D.K., Prasath, C.K., Rajan, D., Rachmawati, L., Rajabaly, E., Quek, C., 2016. Challenges in video
based object detection in maritime scenario using computer vision.
Sentry, n.d. . SEA.Al. URL https://sea.ai/product/sentry-collision-avoidance-for-motor-vessels/ (ac-
cessed 7.25.24).
Stach, T., Koch, P., Constapel, M., Portier, M., Schmid, H., 2023. VerifAl: Framework for Functional Ver-
ification of Al-based Systems in the Maritime Domain. Gdynia. Presented at the TransNAV,
Sdynia.