Skip to main content

Full text: Investigation of potential metal emissions from galvanic anodes in offshore wind farmsinto North Sea sediments

Marine Pollution Bulletin 194 (2023) 115396 12 Barbarin, M., Turquois, C., Dubillot, E., Huet, V., Churlaud, C., Muttin, F., Thomas, H., 2023. First quantitative biomonitoring study of two ports (marina, commerce) in French littoral area: evaluation of metals released into the marine environment and resulting from galvanic anodes. Sci. Total Environ. 857, 159244 https://doi.org/ 10.1016/j.scitotenv.2022.159244. Bayon, G., Freslon, N., Germain, Y., Bindeman, I.N., Trinquier, A., Barrat, J.-A., 2021. A global survey of radiogenic strontium isotopes in river sediments. Chem. Geol. 559, 119958 https://doi.org/10.1016/j.chemgeo.2020.119958. Bell, A.M., von der Au, M., Regnery, J., Schmid, M., Meermann, B., Reifferscheid, G., Ternes, T., Buchinger, S., 2020. Does galvanic cathodic protection by aluminum anodes impact marine organisms? Environ. Sci. Eur. 32, 157. https://doi.org/ 10.1186/s12302-020-00441-3. Bohnecke, G., 1922. Salzgehalt und Stromungen der Nordsee. Zeitschrift der Gesellschaft für Erdkunde zu Berlin 300–302. Boyle, E., Lee, J.-M., Echegoyen, Y., Noble, A., Moos, S., Carrasco, G., Zhao, N., Kayser, R., Zhang, J., Gamo, T., Obata, H., Norisuye, K., 2014. Anthropogenic lead emissions in the ocean: the evolving global experiment. Oceanography 27, 69–75. https://doi.org/10.5670/oceanog.2014.10. Brand, W.A., Coplen, T.B., Vogl, J., Rosner, M., Prohaska, T., 2014. Assessment of interna- tional reference materials for isotope-ratio analysis (IUPAC technical report). Pure Appl. Chem. 86, 425–467. Brückner, S., Mackensen, A., 2006. Deep-water renewal in the Skagerrak during the last 1200 years triggered by the North Atlantic oscillation: evidence from benthic foraminiferal ?8O. The Holocene 16, 331–340. https://doi.org/10.1191/ 0959683605hl931rp. BSH, 1991. Jahresbericht 1990. Hamburg. https://digitale-bibliothek.bsh.de/viewer/i mage/62589/5/. BSH, 2009. System Nordsee – Zustand 2005 Im Kontext Langzeitlicher Entwicklungen (System North Sea - State 2005 in the Context of Long-Term Developments). Hamburg & Rostock. BSH, 2016. Nordseezustand 2008–2011. Hamburg & Rostock. https://www.bsh.de/DE/ PUBLIKATIONEN/_Anlagen/Downloads/Meer_und_Umwelt/Berichte-des-BSH/ Beri1chte-des-BSH_54.html. BSH, 2023. Flachenentwicklungsplan 2023 für die deutsche Nordsee und Ostsee. Hamburg & Rostock. https://www.bsh.de/DE/THEMEN/Offshore/Meeresfachplan ung/Flaechenentwicklungsplan/_Anlagen/Downloads/FEP_2023_1/Flaechenentwic klungsplan_2023.pdf?__blob?publicationFile&v?1. Caplat, C., Oral, R., Mahaut, M.L., Mao, A., Barillier, D., Guida, M., Della Rocca, C., Pagano, G., 2010. Comparative toxicities of aluminum and zinc from sacrificial anodes or from sulfate salt in sea urchin embryos and sperm. Ecotoxicol. Environ. Saf. 73, 1138–1143. https://doi.org/10.1016/j.ecoenv.2010.06.024. Caplat, C., Mottin, E., Lebel, J.-M., Serpentini, A., Barillier, D., Mahaut, M.-L., 2012. Impact of a sacrificial anode as assessed by zinc accumulation in different organs of the oyster Crassostrea gigas: results from Long- and short-term laboratory tests. Arch. Environ. Contam. Toxicol. 62, 638–649. https://doi.org/10.1007/s00244-011- 9737-0. Caplat, C., Basuyaux, O., Pineau, S., Deborde, J., Grolleau, A.M., Leglatin, S., Mahaut, M. L., 2020. Transfer of elements released by aluminum galvanic anodes in a marine sedimentary compartment after long-term monitoring in harbor and laboratory environments. Chemosphere 239, 124720. https://doi.org/10.1016/j. chemosphere.2019.124720. Capo, R.C., Stewart, B.W., Chadwick, O.A., 1998. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82, 197–225. Carpenter, J.R., Merckelbach, L., Callies, U., Clark, S., Gaslikova, L., Baschek, B., 2016. Potential impacts of offshore wind farms on North Sea stratification. PLoS One 11, e0160830. https://doi.org/10.1371/journal.pone.0160830. Christiansen, N., Daewel, U., Djath, B., Schrum, C., 2022. Emergence of large-scale hydrodynamic structures due to atmospheric offshore wind farm wakes. Front. Mar. Sci. 9 https://doi.org/10.3389/fmars.2022.818501. Coplen, T.B., 2011. Guidelines and recommended terms for expression of stable-isotope- ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560. https://doi.org/10.1002/rcm.5129. de Laeter, J.R., Bohlke, J.K., De Bievre, P., Hidaka, H., Peiser, H.S., Rosman, K.J.R., Taylor, P.D.P., 2003. Atomic weights of the elements. Review 2000 (IUPAC technical report). Pure Appl. Chem. 75, 683–800. https://doi.org/10.1351/ pac200375060683. Environmental impacts of offshore wind farms in the Belgian part of the North Sea. Attraction, avoidance and habitat use at various spatial scales. In: Degraer, S., Brabant, R., Rumes, B., Vigin, L. (Eds.), 2021. Royal Belgian Institute of Natural Sciences, OD Natural Environment. Marine Ecology and Management, Brussels. Deng, F., Hellmann, S., Zimmermann, T., Profrock, D., 2021. Using Sr-Nd-Pb isotope systems to trace sources of sediment and trace metals to the Weser River system (Germany) and assessment of input to the North Sea. Sci. Total Environ. 791, 148127 https://doi.org/10.1016/j.scitotenv.2021.148127. DIN e.V, 2006. DIN ISO 11843-2:2006-06: Capability of detection - Part 2: Methodology in the Linear Calibration Case. DIN e.V, 2008. DIN 32645:2008-11: Chemical Analysis - Decision Limit, Detection Limit and Determination Limit Under Repeatability Conditions - Terms, Methods, Evaluation. https://doi.org/10.31030/1465413. Ducrotoy, J.P., Elliott, M., de Jonge, V.N., 2000. The North Sea. Mar. Pollut. Bull. 41 (1), 5–23. https://doi.org/10.1016/S0025-326X(00)00099-0. ECHA, 2020. Indium - registration dossier. available online at. https://echa.europa.eu/ de/registration-dossier/-/registered-dossier/22264/6/1. EURACHEM/CITAC, 2012. EURACHEM/CITAC guide: Quantifying Uncertainty in Analytical Measurements, 3 https://www.eurachem.org/images/stories/Guides/ pdf/QUAM2012_P1.pdf. Filella, M., Rodriguez-Murillo, J.C., 2017. Less-studied TCE: are their environmental concentrations increasing due to their use in new technologies? Chemosphere 182, 605–616. https://doi.org/10.1016/j.chemosphere.2017.05.024. Forster, R.M., 2018. The effect of monopile-induced turbulence on local suspended sediment pattern around UK wind farms: field survey report. In: An IECS report to The Crown Estate. Hull. Gabelle, C., Baraud, F., Biree, L., Gouali, S., Hamdoun, H., Rousseau, C., van Veen, E., Leleyter, L., 2012. The impact of aluminium sacrificial anodes on the marine environment: a case study. Appl. Geochem. 27, 2088–2095. https://doi.org/ 10.1016/j.apgeochem.2012.07.001. Golding, L.A., Angel, B.M., Batley, G.E., Apte, S.C., Krassoi, R., Doyle, C.J., 2015. Derivation of a water quality guideline for aluminium in marine waters. Environ. Toxicol. Chem. 34, 141–151. https://doi.org/10.1002/etc.2771. Horsky, M., Irrgeher, J., Prohaska, T., 2016. Evaluation strategies and uncertainty calculation of isotope amount ratios measured by MC ICP-MS on the example of Sr. Anal. Bioanal. Chem. 408, 351–367. https://doi.org/10.1007/s00216-015-9003-9. Kirchgeorg, T., Weinberg, I., Hornig, M., Baier, R., Schmid, M.J., Brockmeyer, B., 2018. Emissions from corrosion protection systems of offshore wind farms: evaluation of the potential impact on the marine environment. Mar. Pollut. Bull. 136, 257–268. https://doi.org/10.1016/j.marpolbul.2018.08.058. Klein, O., Zimmermann, T., Ebeling, A., Kruse, M., Kirchgeorg, T., Profrock, D., 2022a. Occurrence and temporal variation of technology-critical elements in North Sea sediments-a determination of preliminary reference values. Arch. Environ. Contam. Toxicol. 82, 481–492. https://doi.org/10.1007/s00244-022-00929-4. Klein, O., Zimmermann, T., Hildebrandt, L., Profrock, D., 2022b. Technology-critical elements in Rhine sediments - a case study on occurrence and spatial distribution. Sci. Total Environ. 852, 158464 https://doi.org/10.1016/j.scitotenv.2022.158464. Komarek, M., Ettler, V., Chrastny, V., Mihaljevic, M., 2008. Lead isotopes in environmental sciences: a review. Environ. Int. 34, 562–577. https://doi.org/ 10.1016/j.envint.2007.10.005. Kragten, J., 1994. Tutorial review. Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. Ana 119, 2161. https://doi.org/10.1039/an9941902161. Kremling, K., Andreae, M.O., Brgmann, L., van den Berg, C.M.G., Prange, A., Schirmacher, M., Koroleff, E., Kremling, K., Kus, J., 1999. Determination of trace elements. In: Grasshoff, K., et al. (Eds.), Methods of Seawater Analysis. Wiley-VCH Verlag GmbH, Weinheim, Germany, pp. 253–364. https://doi.org/10.1002/ 9783527613984.ch12. Larsen, M.M., Blusztajn, J.S., Andersen, O., Dahllof, I., 2012. Lead isotopes in marine surface sediments reveal historical use of leaded fuel. J. Environ. Monit. 14, 2893–2901. https://doi.org/10.1039/c2em30579h. Levallois, A., Caplat, C., Basuyaux, O., Lebel, J.M., Laisney, A., Costil, K., Serpentini, A., 2022. Effects of chronic exposure of metals released from the dissolution of an aluminium galvanic anode on the Pacific oyster Crassostrea gigas. Aquat. Toxicol. 249, 106223 https://doi.org/10.1016/j.aquatox.2022.106223. Macdonald, D.D., Carr, R.S., Calder, F.D., Long, E.R., Ingersoll, C.G., 1996. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5, 253–278. https://doi.org/10.1007/BF00118995. Mao, A., Mahaut, M.-L., Pineau, S., Barillier, D., Caplat, C., 2011. Assessment of sacrificial anode impact by aluminum accumulation in mussel Mytilus edulis: a large-scale laboratory test. Mar. Pollut. Bull. 62, 2707–2713. https://doi.org/ 10.1016/j.marpolbul.2011.09.017. Mottin, E., Caplat, C., Latire, T., Mottier, A., Mahaut, M.-L., Costil, K., Barillier, D., Lebel, J.-M., Serpentini, A., 2012. Effect of zinc sacrificial anode degradation on the defence system of the Pacific oyster, Crassostrea gigas: chronic and acute exposures. Mar. Pollut. Bull. 64, 1911–1920. https://doi.org/10.1016/j. marpolbul.2012.06.017. Nham, N., 2017. Evaluation of Different Sieving Methods for the Extraction of the Fine Sediment Fraction and their Influence on the Elemental and Isotopic Fingerprint. Universitat Hamburg. OSPAR, 2009. Losses of contaminants from ships’ coatings and anodes. https://qsr2010. ospar.org/media/assessments/p00462_Leaching_report.pdf. OSPAR, 2010. Hazardous Substances, Quality Status Report 2010. OSPAR Commission, Lodnon, pp. 37–52. Peganova, S., Eder, K., 2004. Zinc. In: Merian, E., Anke, M., Ihnat, M., Stoeppler, M. (Eds.), Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance, second ed. Wiley-VCH, Weinheim, p. 1203e1239. Pickaver, A.H., 1982. Titanium dioxide waste dumping at sea time to call a halt. Mar. Pollut. Bull. 13, 375–379. https://doi.org/10.1016/0025-326x(82)90110-2. Profrock, D., Prange, A., 2012. Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends. Appl. Spectrosc. 66, 843–868. https://doi.org/10.1366/12- 06681. Reese, A., Zimmermann, T., Profrock, D., Irrgeher, J., 2019. Extreme spatial variation of Sr, Nd and Pb isotopic signatures and 48 element mass fractions in surface sediment of the Elbe River estuary - suitable tracers for processes in dynamic environments? Sci. Total Environ. 668, 512–523. https://doi.org/10.1016/j.scitotenv.2019.02.401. Reese, A., Voigt, N., Zimmermann, T., Irrgeher, J., Profrock, D., 2020. Characterization of alloying components in galvanic anodes as potential environmental tracers for heavy metal emissions from offshore wind structures. Chemosphere 257, 127182. https://doi.org/10.1016/j.chemosphere.2020.127182. Retzmann, A., Zimmermann, T., Profrock, D., Prohaska, T., Irrgeher, J., 2017. A fully automated simultaneous single-stage separation of Sr, Pb, and Nd using DGA resin for the isotopic analysis of marine sediments. Anal. Bioanal. Chem. 409, 5463–5480. https://doi.org/10.1007/s00216-017-0468-6. A. Ebeling et al.
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.