1370
A. Boesch and S. Müller-Navarra: Reassessment of long-period constituents for tidal predictions
Ocean Sei., 15,1363-1379,2019
www.ocean-sci.net/15/1363/2019/
Table 3. The most important partial tides that were identified in the periodograms, based on the combined evaluation of data from all tide
gauges. See Sect. 4.3 for information on selection criteria and /¡, 7^, N{ and N^.
Doodson
Ü) (° tn 1 )
hi-)
4(-)
Ai(%)
N h (%)
ZZZZAZ
0.0548098
0.0086
0.0102
78
45
ZZZBZZ
0.2306165
0.0019
0.0085
29
47
ZZAXZZ
0.7895780
0.0009
0.0088
16
34
ZZAZZZ
1.0201944
0.0070
0.0367
85
84
ZZBZZZ
2.0403886
0.0013
0.0068
26
56
ZAXZZZ
11.5978420
0.0009
0.0034
69
35
ZAXAZZ
11.7131503
0.0234
0.0024
100
10
ZAYXZZ
12.3874200
0.0006
0.0031
2
65
ZAYZZZ
12.6180365
0.0007
0.0042
34
21
ZAYAAZ
12.7881545
0.0005
0.0031
1
45
ZAZYZZ
13.5229227
0.0112
0.0119
99
90
ZAZZZZ
13.6382309
0.0105
0.0297
97
87
ZAZAZZ
13.7535391
0.0006
0.0016
63
2
ZABBAZ
15.9640460
0.0010
0.0032
1
70
ZBWZZZ
24.2158785
0.0029
0.0081
83
7
ZBXZZZ
25.2360729
0.4550
0.0706
100
92
ZBYZZZ
26.2562673
0.0034
0.0079
55
9
ZBZYZZ
27.1611535
0.0008
0.0021
43
29
ZBZZZZ
27.2764618
0.0382
0.0070
100
85
ZCVAZZ
36.9492232
0.0037
0.0013
99
25
ZCXYZZ
38.7589956
0.0009
0.0014
89
9
ZCXAZZ
38.9896120
0.0010
0.0004
96
0
ZCZYZZ
40.7993844
0.0008
0.0000
93
0
ZDUZZZ
49.4519514
0.0004
0.0000
38
0
ZDVZZZ
50.4721458
0.0196
0.0025
100
73
ZDXZZZ
52.5125347
0.0059
0.0015
99
15
ZDZZZZ
54.5529235
0.0003
0.0003
43
0
ZETAZZ
62.1852961
0.0006
0.0000
93
0
ZEVYZZ
63.9950685
0.0003
0.0001
61
0
ZF.VAZZ
64.2256849
0.0004
0.0000
78
0
ZFTZZZ
75.7082187
0.0014
0.0003
98
2
ZFVZZZ
77.7486076
0.0010
0.0003
97
5
ZHRZZZ
100.9442917
0.0002
0.0000
36
0
ZHTZZZ
102.9846805
0.0002
0.0002
37
0
stronger because the noise level is lower in the respective pe
riodograms.
The rank R can be used to select a sub-list of partial tides
when performing a tidal analysis of water levels with less
than 18.6 years of data. This is important because not all par
tial tides can be resolved against each other for shorter time
series. The minimum difference in angular velocity is given
by the resolution criterion (Eq. 3). Figure 6 illustrates the re
solvable partial tides as a function of the length of the data
record. Note that the high-ranked partial tide representing the
tropical month which occurs at 7? = 4 in the list cannot be in
cluded for time series shorter than about 9 years. For a tidal
analysis of time series shorter than 9 years, it is therefore of
ten better to perform a reference analysis: 19 years of data are
used from a different tide gauge with a similar tidal behaviour
(e.g. similar course of the semi-monthly inequality) and the
results are translated to the original gauge by applying the re
spective differences in the mean lunitidal intervals and mean
heights. This way, nodal corrections can be avoided which
come with their own assumptions and approximations (e.g.
Godin, 1986; Amin, 1987).
5 Comparison of predictions with observations: two
different lists of constituents for the HRoI
For verification of the new constituent list, tidal predictions
based on an existing list of partial tides and based on the