Skip to main content

Full text: Reassessment of long-period constituents for tidal predictions along the German North Sea coast and its tidally influenced rivers

A. Boesch and S. Müller-Navarra: Reassessment of long-period constituents for tidal predictions 
1379 
www.ocean-sci.net/15/1363/2019/ 
Ocean Sei., 15,1363-1379, 2019 
Author contributions. Both authors designed the study and dis 
cussed the results. AB analysed the data and prepared the article 
with input from SMN. 
Competing interests. The authors declare that they have no conflict 
of interest. 
Special issue statement. This article is part of the special 
issue “Developments in the science and history of tides 
(OS/ACP/HGSS/NPG/SE inter-journal SI)”. It is not associ 
ated with a conference. 
Review statement. This paper was edited by Philip Woodworth and 
reviewed by three anonymous referees. 
References 
Amin, M.: A method for approximating the nodal modulations of 
real tides, Int. Hydrogr. Rev., 64, 103-113, 1987. 
Bundesamt für Seeschifffahrt und Hydrographie: Gezeitentafeln 
2018, Europäische Gewässer, BSH, Hamburg and Rostock, 
2017a. 
Bundesamt für Seeschifffahrt und Hydrographie: Gezeitenkalender 
2018, Hoch- und Niedrigwasserzeiten für die Deutsche Bucht 
und deren Flussgebiete, BSH, Hamburg and Rostock, 2017b. 
Chapront-Touzé, M. and Chapront, J.: Lunar Tables and Programms 
from 4000 B.C. to A.D. 8000, Willmann-Bell, Richmond, Vir 
ginia, 1991. 
Codiga, D. L.: Unified Tidal Analysis and Prediction Using the 
UTide Matlab Functions, Technical report 2011-01, Graduate 
School of Oceanography, University of Rhode Island, 2011. 
Doodson, A. T.: The Harmonic Development of the Tide- 
Generating Potential, P. R. Soc. London A, 100, 305-329, 
https://doi.org/10.1098/rspa.1921.0088, 1921. 
Doodson, A. T.: The analysis of high and low waters, Int. Hydrogr. 
Rev., 28, 13-77, 1951. 
Foreman, M. G. G.: Manual for Tidal Heights Analysis and Predic 
tion, Pacific Marine Science Report, 77-10, 1977. 
Foreman, M. G. G. and Henry, R. F: Tidal Analysis Based on High 
and Low Water Observations, Pacific Marine Science Report, 79- 
15, 1979. 
Godin, G.: The use of nodal corrections in the calculation of har 
monic constants, Int. Hydrogr. Rev., 63, 143-162, 1986. 
Goffinet, P: Qualitätssteigerung der Seevermessung und Navigation 
durch neuartige Beschickungsverfahren, Phd thesis, Universität 
Hannover, 2000. 
Horn, W.: Über die Darstellung der Gezeiten als Funktion der Zeit, 
Deutsche Hydrographische Zeitschrift, 1, 124—140, 1948. 
Horn, W.: Some recent approaches to tidal problems, Int. Hydr. 
Rev., 37, 65-84, 1960. 
International Earth Rotation and Reference Systems Service: IERS 
Conventions (2010), Verlag des Bundesamts für Kartographie 
und Geodäsie, Frankfurt am Main, 2010. 
Lubbock, J. W.: On the tides in the port of London, P. T. Roy. Soc. 
London, 121, 349^115, https://doi.org/10.1098/rstl.1831.0022, 
1831. 
Meeus, J.: Astronomical Algorithms, Willmann-Bell, Richmond, 
Virginia, 1998. 
Müller-Navarra, S.: Zur automatischen Scheitelpunktbestimmung 
gemessener Tidekurven in der Deutschen Bucht, Hydrologie und 
Wasserbewirtschaftung, 53, 380-388, 2009. 
Müller-Navarra, S.: Gezeitenvorausberechnungen mit der Har 
monischen Darstellung der Ungleichheiten (On Tidal Predictions 
by Means of Harmonic Representation of Inequalities), Berichte 
des Bundesamtes für Seeschifffahrt und Hydrographie, Hamburg 
and Rostock, 50, 2013. 
Parker, B. B.: Tidal Analysis and Prediction, U.S. Department of 
Commerce, NOAA Special Publication NOS CO-OPS 3, 2007. 
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal 
harmonic analysis including error estimates in MAT- 
LAB using T_TIDE, Comput. Geosci., 28, 929-937, 
https://doi.org/10.1016/S0098-3004(02)00013-4, 2002. 
Prabhu, K. M. M.: Window Functions and Their Applications in 
Signal Processing, CRC Press, Boca Raton, 2014. 
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P: 
Numerical Recipes in FORTRAN, Cambridge University Press, 
Cambridge, 1992. 
Simon, B.: Coastal Tides, Institut océanographique, Paris, 2013. 
Zechmeister, M. and Kürster, M.: The generalised Lomb-Scargle 
periodogram. A new formalism for the floating mean and 
Keplerian periodograms, Astron. Astrophys., 496, 577-584, 
https://doi.Org/10.1051/0004-6361:200811296, 2009.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.