Hellmuth Geißler: Die deutschen Hochseepegel.
67
v
berechnen. Wir können aber auch — in die einfache Formel p • v = p ö • v 0 des Boyle-Mariotte-
v G
sehen Gesetzes einsetzen und finden daraus einen von p abweichenden Druckwert
P' =
Po
V
V °
Dabei ist p' als der falsche Wert und p als der richtige anzusehen.
Bilden wir nun (p' — p), so würden sich die beiden zur Diskussion stehenden Formeln ah
gleichwertig ergeben, wenn diese Differenz eine Konstante wäre. Bei Verwendung von p'
würden wir dann nämlich einen konstanten Fehler für W N machen, und ein solcher ist, wie
oben erläutert, ohne Bedeutung, solange sich die mittlere Dichte der Wassersäule über dem
Pegel nicht wesentlich ändert. Ist aber (p' — p) nicht konstant, dann muß die Verwendung des
Gasgesetzes an Stelle der van der Waalsschen Gleichung einen Fehler mit sich bringen, der
folgendermaßen bestimmt werden kann.
Wir berechnen zunächst (p' — p), indem wir — wie schon gesagt — in den Ausdruck
Po
V/V 0
*
und in die Formel 38.) für — passende Werte einsetzen, die ungefähr gleichabständigen
Ansiegetiefen entsprechen. Dividieren wir die Differenzen (p' — p) durch die mittlere Dichte
des Seewassers (gleich 1.028; vgl. S. 39!), so ergeben sich die Tiefenunterschiede
z), die bei
der Verwendung der beiden zu prüfenden Formeln auftreten. z' erhalten wir sehr einfach aus
dem Boyle-Mariotteschen Gesetz gleich 10
?o \
-t).
V /
und z ist gleich z' — (z' — z). Damit sind
für eine Reihe nahezu gleichabständiger Auslegetiefen die zusammengehörigen Wertepaare
für z und (z'—■ z) gefunden. Die Rechnungsergebnisse sind in Tabelle 12 angegeben und in
den Tafeln Nr. 10 und 11 durch eine Kurve graphisch dargestellt. Die Steigung der Kurven
tangente gibt für jede Auslegetiefe den Fehler in cm pro m Wasserstandsänderung an, der bei
Benutzung des Gasgesetzes an Stelle der van der Waalsschen Gleichung gemacht wird, und
man erkennt, daß dieser Fehler nicht vernachlässigt werden darf, wenn eine einigermaßen
genaue Berechnung der Pegelaufzeichnungen angestrebt wird. Zur bequemeren Übersicht sind
die Fehler F in cm pro m Wasserstandsänderung für einige Tiefen zusammengestellt:
Tabelle 13.
z m
F cm
z m
F cm
z m
F cm
10
0.3
75
1.7
200
4.2
25
0.6
100
2.2
250
5.1
50
1.2
150
3.2
275
5.6
Ferner zeigt die Kurve, daß (z' — z) stets positiv ist und mit wachsendem z zunimmt. Das
bedeutet, daß die sich aus z ergebende Wasserstandskurve gegenüber der wahren aus z her
geleiteten überhöht ist. Die Ordinaten einer auf Grund des Gasgesetzes berechneten Gezeiten
oder allgemeinen Wasserstandskurve sind also um soviel Prozent, wie F in cm beträgt, zu
verkürzen, wobei allerdings der Prozentsatz auf die bereits verkleinerten wahren Ordinaten
bezogen ist. Die Prozentsätze wachsen dabei ungefähr proportional mit der Auslegetiefe.
Es sei hier noch darauf hingewiesen, daß die weiter oben (S. 42 ff.) durchgeführte Genauig
keitsrechnung für den Rauschelbachpegel trotz des Übergangs vom Gasgesetz zur van der
Waalsschen Gleichung bestehen bleibt, denn diese stellt nur eine Verbesserung des Gasgesetzes
dar, und die obigen Fehlerrechnungen werden dadurch nicht hinfällig.