Dr.Htigo Mandelbaam: Gezeitenströme und Re_st ströme bei Borkum-Riff-Feüsrsohiff. 11
Über die Verteilung der Beobachtungen auf die verschiedenen Windstärken
ergab eine überschlagsmässige Auszählung, daß Windstärken 3 und 4 ungefähr bei je
25% aller Beobachtungen vermerkt sind, Während Windstärke 1 und 2 bezw. 5 und 6
nur zusammen 25/4 der Beobachtungen umfassen. Bei Windstärke 7 liegen nur wenige Be-
•b achtungen vor. Bei noch stärkeren Winden sind Strommessungen im allgemeinen nicht
mehr gemacht worden. Die Einteilung der Beobachtungen auf 2 Windstärkegruppen mit
einer Trennung zwischen den Windstärken 5 und 4 liefert in jeder Gruppe annähernd
gleich viel Beobachtungen, wobei das Mittel der schwachen Winde zwischen den Windstär
ken 2 und 3, das der starken zwischen den Windstärken 4 und 5 liegt. Der Mittelwerb
des in 2 Komponenten zerlegten Stroms für die n^ e Mondhalbstunde bei schwachen Win
den wird mit B" , der bei starken Winden B^’ bezeichnet. Die Quermittel Q^(b^')
und Q (B ) stellen den Reststrom bei schwachen bezw. starken Winden dar
und zwar bezeichnet
. 1 t. .in
Q 2 (B ) und Q^(B ) Reststrom für NNO-und NO-Wind,
5 n ‘ 3 n
QyCß”) " Q^B™) " " ONO- " O-Wind,
VO
, fff
%l< B n )
NNW- " N-
3» Berechnung der Gezeitenströme.
Die in zwei aufeinander senkrecht... stehenden'■ Richtungen Verleg-,
ten Stromgeschwindigkeiten lassen sich durch eine harmonische Funktion darstellen
von der Form
e(t) = ^ 0 +R-^cos(15°*t - £ x ) + Rg-cos^O^t - £g) +
/
= A o +Rj*cos(l5 0, t)'0034^+ R 2 'cos(30°'t)‘cos ^ 2 +
+Rj»sin(15°*t) • sint>i + N2* S ^ n ^0° • t) • sin £ g +
wo t die Zeit in Mondhalbstunden nach dem Durchgang des Mondes durch den Meridian
in Greenwich bedeutet, A die Komponente des mittleren Reststroms für die betrach
teten Beobachtungswerte, R^, R^, die größten Geschwindigkeiten der Gezeiten
ströme in der einen Achsenrichtung und -K-, , -¡4-,, die Phasen der Gezeiten -
ströme bei Mondmeridiandurohgang darstellen.
Setzt man
Rp'cos r 1 = Ap
Rp-sin = Bp
V 0085 2 = A 2
R 2 *sin C 2 = B 2
so wird die Gleichung (1)
s(t) = A q + Ap * cos(15° *t) + Ag* cos(30° - 1) +
+ Bp*sin(l5°'t)+ B 2 'sin(30°'t) +
In den Mittelwerten B„, Bp , Bg^ für die 24 Mondhalbstunden sind die Werte
für s(0), s(l) s (23) gegeben. Das ergibt 24 Bedingungsgleichungen für die
Unbekannten A q , Ap, Bp, Ag, B g ,