Dr. H. Kauschelbach: Harmonische Analyse der Gezeiten des Meeres. I. Teil
51
Argu-
ment-
zahl
Koef
fizient
Argument
nach Doodson in üblicher Bezeichnung
Winkel
geschwindigkeit
Tiden-
zahlen
Tide
10
1
2
3
4
5
6
7
8
9
1 GG.554
-
423 s
r+ s+. h -p t
t
+2 h
]> t + 90°
y + V <■>,
1787.76
1787
RP,
13
167.355
26 s
i + s + 2h-2p
t
+ 3/i 2p
+ 90
1795.7
.555
-
756 s
i + s + 2 h
t
+3 h
+ 90
7
1797.7
1797
KP,
14
.565
+
29 s
t + s+ 2 h + N'
t
+ 3 ll +
A'
90
1797.8
173.445
_
17s
t+2s-2h- p AP
t +
s- h ■ p -
A r '
+ 90
1856.6
.645
18 s
r + 2s -2A + p - N'
t +
s- A + p -
A'
90
1858.6
.655
5668
r+2s-2A+ p
t +
s- A+ p
+ 90
y + a - 2i] + to
1858.7
1858
/10,
15
.665
112 8
t*2s-2h+ p+ AP
t +
s- A+ p +
A 7 '
+ 90
1858.8
.765
-
S9C
t+2s -2h + 2p + N’
/ +
s h \-2p +
N'
+ 180
1859.8
175.445
-f-
87 s
r+2s - p- N'
t +
s + h - p -
A 7 '
- 90
1876.6
.455
-
2964 s
i+2$ - p
t +
s+ A p
+ 90
y + a - (o
j.
1876.7
1876
Ji
10
.465
-
587 s
r + 2 s - p + A 7 '
t +
s + A - p +
y
+ 90
1876.8
.555
-
241 c
x 4- 2 s
t +
s+ A
+ 180
1877.7
.655
+
46 s
t + 2s + p
/ +
s+ A+ p
90
1878.7
183.545
_
168
r+3s-2A - A 7 '
/ +
2s- h
N’
+ 90
1957.6
.555
-
492 s
r + 3s -2A
/ +
2s- h
+ 90
y + 2 a - 21]
so,
1957.7
1957
SO,
17
.565
-
96 s
r+3s-2A + A 7 '
t+2s- h
N’
+ 90
1957.8
185.355
_
240 s
r + 3s -2p
t +
2s+ h -2p
+ 90
1975.7
.365
-
48 s
t + 3s - 2p + A 7 '
/ +
2s+ h-2p +
X’
+ 90
1975.8
.455
-
40c
r+3s - p
t-
2s+ h- p
+ 180
1976.7
.555
-
1623 s
% + 3s
t + 2 s + h
+ 90
y + 2(7
00,
1977.7
1977
00,
18
.565
-
1039 s
r+3s + A'
/+2s+ h +
y
+ 90
1977.8
.575
-
218 s
r + 3s + 2A"
/ +
2s+ A +2A 7 '
+ 90
1977.9
195.255
-
19 s
r + 4s -3p
/ +
3s+ h-3p
+ 90
1Z74.7
.455
311 s
r+4s - p
¿ + 3s+ h- p
+ 90
y + 3(7 - û>
1Z76.7
1/76
KQ,
19
.465
199 s
x + 4 s - p + A"
< + 3s+ h- p +
y
+ 90
1Z76.8
.475
-
42 s
r + 4s - P + 2N’
¿ + 3s+ h- p+2N'
+ 90
1Z76.9
2. Halbtägige
Tiden.
227.555
-
27 s
2r-3s + 2 A
2t-
5s+ 1A
+ 90°
2297.7
.645
-
25 c
2r-3s+2A+ p A"
2t-
ÔS+1A+ ]) -
y
+ 180
2298.6
.655
+
671 c
2t-3s + 2A + p
2t-
ÖS+4A+ p
2y - 5 tr + 21] + ta
2298.7
2298
MAS,
20
235.655
-
156 s
2i-2s + p
2t-
4s+2A+ p
+ 90
2378.7
.745
-
86 c
2t-2s +2p- AP
2t
4s+2A+2p -
y
+ 180
2379.6
.755
~r
2301 c
2r-2s +2])
2t-
4s+2A +2p
2y -4a -h 2a)
2Nj
2379.7
2379
2Nj
21
237.545
-
104 c
21 -2s + 2/i - A'
2t-
4s+4A
y
+ 180
2397.6
.555
+
2777 c
2z-2s + 2h
2t-
4s+4A
2 y - 4 <7 + 2 >]
,"2
2397.7
•2397
.«s
22
245.435
-
63 c
2x- s - p-2N'
2t-
3s+2A- p
2 y
+ 180
2476.5
.545
-
97 s
2t- s - A'
2t
3s+2A
y
+ 90
2477.6
.555
-
569 f
2t- s
2t-
3s+2A
+ 90
2477.7
.645
648 c
2t - s + p - N'
2t-
3s+2A+ p-
y
+ 180
2478.6
.655
+ 17387 c
2t- s + p
2t
3s+2A+ p
2y - 3 or + • 0
N s
2478.7
2478
N 3
23
247.445
-
123 c
2t - s + 2 A - p- N'
2t
3s+4 A - p -
y
+ 180
2496.6
.455
+
3303 c
2t- s+2h- p
2t-
3s+4A - p
2 y - 3 a + 21? - co
2496.7
2496
v i
24
255.535
• +
47 c
2t - 2 N'
2t
2s+2A
2 y
2577.5
.545
-
3386 c
2 t - N'
2t
2s+2A
N’
+ 180
2577.6
.555
+90812 c
2t
2t
2s+2A
2 y-2 a
2577.7
2577
25
.655
+
86 s
2t + p
2t-
2s+2A+ p
- 90
2578.7
.755
+
53C
2r +2 p
2 t
2s \-2h v2p
2579.7