ZZ Fraunhofer zZ Fraunhofer
CML 160
[62] Bovcon, Borja, Muhovi€, Jon, PerS, Janez und Kristan, Mate]: The MaSTr1325 dataset for training deep USV
obstacle detection models. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(/ROS). IEEE, 2019.
[63] Ljungqvist, Martin Georg, Nordander, Otto, Skans, Markus, Mildner, Arvid, Liu, Tony und Nugues, Pierre: Object
Detector Differences When Using Synthetic and Real Training Data. SN Computer Science, 4(3):302, März
2023, ISSN 2661-8907.
[64] Kasaei, S. Hamidreza, Ghorbani, Maryam, Schilperoort, Jits und Rest, Wessel van der: /nvestigating the Im-
portance of Shape Features, Color Constancy, Color Spaces and Similarity Measures in Open-Ended 3D Object
Recognition. CoRR, abs/2002.03779, 2020. | ttps://arxiv.org/abs/2002.03773.
[65] Cromey, Douglas: Digital Images Are Data: And Should Be Treated as Such. Methods in molecular biology
(Clifton, N.J.), 931:1—-27, Januar 2013.
[66] Cubuk, Ekin D., Zoph, Barret, Mane, Dandelion, Vasudevan, Vijay und Le, Quoc V.: AutoAugment: Learning
Augmentation Policies from Data, 2019.
[67] Siegert, Gregor, Hoth, Julian, Banys, Pawet und Heymann, Frank: Generic Framework for Vessel Detection
and Tracking Based on Distributed Marine Radar Image Data. CEAS Space Journal, 11(1):65-79, März 2019,
ISSN 1868-2510.
[68] Man, Keith und Chahl, Javaan: A Review of Synthetic Image Data and Its Use in Computer Vision. Journal of
Imaging, 8(11):310, November 2022, ISSN 2313-433X.
[69] Zhan, Fangneng, Yu, Yingchen, Wu, Rongliang, Zhang, Jiahui, Lu, Shijian, Liu, Lingjie, Kortylewski, Adam,
Theobalt, Christian und Xing, Eric: Multimodal Image Synthesis and Editing: A Survey and Taxonomy. |EEE
Transactions on Pattern Analysis and Machine Intelligence, Seiten 1-20, 2023, ISSN 1939-3539.
[709] Borji, Ali: Generated Faces in the Wild: Quantitative Comparison of Stable Diffusion, Midjourney and DALL-E
2, Juni 2023.
[71] Mewes, Bernd: Dall.E 3: OpenAl verbessert Ergebnisse dank nativer Chat-GPT-Unterstützung.
https:/www.heise.de/news/Dall-E-3-OpenAl-verbessert-Ergebnisse-dank-nativer-Chat-GPT-Unterstuetzung-
3312381.html, September 2023.
[72] Burmeister, H. C., Constapel, M., Uge, C und Jahn, C: From Sensors to MASS: Digital Representation of the
Perceived Environment Enabling Ship Navigation. Band 929 der Reihe /OP Conference Series: Materials Science
and Engineering. |OP Publishing, 2020.
sr