Skip to main content

Full text: BAnA Studie zur Bewertung von Algorithmen für nautische Anwendungen

ZZ Fraunhofer zZ Fraunhofer 
CML 160 
[62] Bovcon, Borja, Muhovi€, Jon, PerS, Janez und Kristan, Mate]: The MaSTr1325 dataset for training deep USV 
obstacle detection models. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems 
(/ROS). IEEE, 2019. 
[63] Ljungqvist, Martin Georg, Nordander, Otto, Skans, Markus, Mildner, Arvid, Liu, Tony und Nugues, Pierre: Object 
Detector Differences When Using Synthetic and Real Training Data. SN Computer Science, 4(3):302, März 
2023, ISSN 2661-8907. 
[64] Kasaei, S. Hamidreza, Ghorbani, Maryam, Schilperoort, Jits und Rest, Wessel van der: /nvestigating the Im- 
portance of Shape Features, Color Constancy, Color Spaces and Similarity Measures in Open-Ended 3D Object 
Recognition. CoRR, abs/2002.03779, 2020. | ttps://arxiv.org/abs/2002.03773. 
[65] Cromey, Douglas: Digital Images Are Data: And Should Be Treated as Such. Methods in molecular biology 
(Clifton, N.J.), 931:1—-27, Januar 2013. 
[66] Cubuk, Ekin D., Zoph, Barret, Mane, Dandelion, Vasudevan, Vijay und Le, Quoc V.: AutoAugment: Learning 
Augmentation Policies from Data, 2019. 
[67] Siegert, Gregor, Hoth, Julian, Banys, Pawet und Heymann, Frank: Generic Framework for Vessel Detection 
and Tracking Based on Distributed Marine Radar Image Data. CEAS Space Journal, 11(1):65-79, März 2019, 
ISSN 1868-2510. 
[68] Man, Keith und Chahl, Javaan: A Review of Synthetic Image Data and Its Use in Computer Vision. Journal of 
Imaging, 8(11):310, November 2022, ISSN 2313-433X. 
[69] Zhan, Fangneng, Yu, Yingchen, Wu, Rongliang, Zhang, Jiahui, Lu, Shijian, Liu, Lingjie, Kortylewski, Adam, 
Theobalt, Christian und Xing, Eric: Multimodal Image Synthesis and Editing: A Survey and Taxonomy. |EEE 
Transactions on Pattern Analysis and Machine Intelligence, Seiten 1-20, 2023, ISSN 1939-3539. 
[709] Borji, Ali: Generated Faces in the Wild: Quantitative Comparison of Stable Diffusion, Midjourney and DALL-E 
2, Juni 2023. 
[71] Mewes, Bernd: Dall.E 3: OpenAl verbessert Ergebnisse dank nativer Chat-GPT-Unterstützung. 
https:/www.heise.de/news/Dall-E-3-OpenAl-verbessert-Ergebnisse-dank-nativer-Chat-GPT-Unterstuetzung- 
3312381.html, September 2023. 
[72] Burmeister, H. C., Constapel, M., Uge, C und Jahn, C: From Sensors to MASS: Digital Representation of the 
Perceived Environment Enabling Ship Navigation. Band 929 der Reihe /OP Conference Series: Materials Science 
and Engineering. |OP Publishing, 2020. 
sr
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.