Zi Fraunhofer % Fraunhofer
CML 160
[28] Koch, Paul, Stach, Thomas, Constapel, Manfred und Burmeister, Hans Christoph: VerifAl, Studie Zur Zielba-
sierten Standardisierung in Der Prüfung Und Zulassung Intelligenter Entscheidungseinrichtungen von Teilau-
tonomen Überwasserfahrzeugen. Studie, 2023.
[29] DIN SPEC 92001-1:2019-04, Künstliche Intelligenz - Life Cycle Prozesse Und Qualitätsanforderungen - Teil 1
Qualitäts-Meta-Modell, April 2019.
[30] DIN SPEC 92001-2:2020-12, Künstliche Intelligenz - Life Cycle Prozesse Und Qualitätsanforderungen - Teil 2
Robustheit, Dezember 2020.
[31] Poretschkin, Maximilian, Schmitz, Anna, Akila, Maram, Adilova, Linara, Becker, Daniel, Cremers, Armin, He-
<ker, Armin, Houben, Sebastian, Mock, Michael, Rosenzweig, Julia, Sicking, Joachim, Schulz, Elena, Voss, An-
gelika und Wrobel, Stefan: Leitfaden Zur Gestaltung Vertrauenswürdiger Künstlicher Intelligenz. Technischer
Bericht, Fraunhofer-Institut für Intelligente Analyseund Informationssysteme IAIS, Juli 2021.
[32] DIN SPEC 13266:2020-04, Leitfaden Für Die Entwicklung von Deep-Learning-Bilderkennungssystemen, April
2020.
[33] /SONEC Technical Report 29119-11, Software and Systems Engineering - Software Testing - Part 11: Guidelines
on the Testing of Al-based Systems, November 2020.
[34] /SONEC International Standard 22989, Information Technology - Artificial Intelligence - Artificial Intelligence
Concepts and Terminology, Juli 2022.
[35] /SONEC International Standard 23053:2022-06, Framework for Artificial Intelligence (Al) Systems Using Ma-
chine Learning (ML), Juni 2022.
[36] /SONEC Technical Specification 4213, Information Technology - Artificial Intelligence - Assessment of Machine
Learning Classification Performance, Oktober 2022.
[37] /SONEC Technical Report 24030 Information Technology - Artificial Intelligence (Al) - Use Cases, Mai 2021.
[38] /SONECHEEE 12207:2017. Systems and Software Engineering - Software Life Cycle Processes, November 2017.
[39] Ashmore, Rob, Calinescu, Radu und Paterson, Colin: Assuring the Machine Learning Lifecycle: Desiderata,
Methods, and Challenges. ACM Computing Surveys, 54(5):111:1-111:39, Mai 2021, ISSN 0360-0300.
[40] /SO Technical Specification 23860, Ships and Marine Technology - Vocabulary Related to Autonomous Ship
Systems, Mai 2022.
[41] Feng, Xin, Jiang, Youni, Yang, Xuejiao, Du, Ming und Li, Xin: Computer Vision Algorithms and Hardware
Implementations: A Survey. Integration, 69:309-320, November 2019, ISSN 0167-9260.
[42] /SONEC Technical Report 24027 Information Technology - Artificial Intelligence (Al) - Bias in Al Systems and Al
Aided Decision Making, November 2021.
[43] Zhao, Yizhen: MLOps and Data Versioning in Machine Learning Project. Technischer Bericht, Universiteit Ams-
terdam, Amsterdam, 2020.
[44] Klump, Jens, Wyborn, Lesley, Wu, Mingfang, Martin, Julia, Downs, Robert R. und Asmi, Ari: Versioning Data Is
About More than Revisions: A Conceptual Framework and Proposed Principles. Data Science Journal, 20:12,
März 2021, ISSN 1683-1470.
[45] Chen, Xiang, Liu, Yuanchang und Achuthan, Kamalasudhan: WODIS: Water Obstacle Detection Network Ba-
sed on Image Segmentation for Autonomous Surface Vehicles in Maritime Environments. |EEE Transactions
an Instrumentation and Measurement, 70:1—-13, 2021.
[46] Ren, Shaoding, He, Kaiming, Girshick, Ross B. und Sun, Jian: Faster R-CNN: Towardss Real-Time Object Detection
with Region Proposal Networks. |EEE Transactions_on_Pattern Analysis and Machine Intelligence, 39:1137-
1149, 2015. https://api.semanticscholar.org/CorpusID: 10328904.
[47] Lin, Tsung Yi, Goyal, Priya, Girshick, Ross B., He, Kaiming und Dollär, Piotr: Focal Loss for Dense Ob-
< Detection. 2017 IEEE International Conference on_ Computer Vision (ICCV), Seiten 2999-3007, 2017.
ttps://api.semanticscholar.org/CorpusID: 47252984.
5