_iteratur
fin
Yepes-Arbös X, and Zhang Q (2022) The EC-Earth3 Earth system model for the Coupled Model Inter-
comparison Project 6. Geosci. Model Dev. 15(7), 2973-3020. https://doi.org/10.5194/gmd-15-2973-
2022
Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, and Taylor KE (2016) Overview of the
Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization.
Seosci. Model Dev. 9(5), 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016
Fisher RA, and Tippett LHC (1928) Limiting forms of the frequency distribution of the largest or smallest
member of a sample. Math. Proc. Camb. Philos. Soc. 24(2), 180-190.
https://doi.org/10.1017/S030500410001568 1
Sanske A (2019a) Validation von Windfeldergebnissen auf See und an der Küste aus regionalen gekop-
oelten Ozean-Atmosphäre-Klimamodellen. Meilenstein M104a-2, Themenfeld 1 ‘Verkehr und Infra-
struktur an Klimawandel und extreme Wetterereignisse anpassen’, Schwerpunktthema SP-104 ‘Sturm:
gefahren’.
Sanske A (2019b) Analyse von Windfeldergebnissen auf See und an der Küste aus regionalen gekop-
oelten Ozean-Atmosphäre-Klimamodellen. Meilenstein M104a-4, Themenfeld 1 ‘Verkehr und Infra-
struktur an Klimawandel und extreme Wetterereignisse anpassen’, Schwerpunktthema SP-104 ‘Sturm-
gefahren’.
Sanske A, Fery N, Gaslikova L, Grabemann I, Weisse R, and Tinz B (2018) Identification of extreme
storm surges with high-impact potential along the German North Sea coastline. Ocean Dyn. 68(10),
1371-1382. https://doi.org/10.1007/s10236-018-1190-4
Gerber M, Ganske A, Müller-Navarra S, and Rosenhagen G (2016) Categorisation of Meteorological
Conditions for Storm Tide Episodes in the German Bight. Meteorol. Z. 25(4), 447-462.
https://doi.org/10.1127/metz/2016/0660
Harvey BJ, Cook P, Shaffrey LC, and Schiemann R (2020) The Response of the Northern Hemisphere
Storm Tracks and Jet Streams to Climate Change in the CMIP3, CMIP5, and CMIP6 Climate Models. J.
Geophys. Res. Atmospheres 125(23), . https://doi.org/10.1029/2020JD032701
Herrera-Lormendez P, Mastrantonas N, Douville H, Hoy A, and Matschullat J (2022) Synoptic circulation
changes over Central Europe from 1900 to 2100: Reanalyses and Coupled Model Intercomparison Pro-
ject phase 6. Int. J. Climatol. 42(7), 4062-4077. https://doi.org/10.1002/joc. 7481
Hersbach H, Bell B, Berrisford P, Hirahara S, Horänyi A, Mufoz-Sabater J, Nicolas J, Peubey C, Radu R,
Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita
M, Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A,
Haimberger L, Healy S, Hogan RJ, Hölm E, Janiskovä M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti
3, Rosnay P, Rozum I, Vamborg F, Villaume S, and Thepaut J (2020) The ERA5 global reanalysis. Q. J. R.
Meteorol. Soc. 146(730), 1999-2049. https://doi.org/10.1002/qj.3803
Huguenin MF, Fischer EM, Kotlarski S, Scherrer SC, Schwierz C, and Knutti R (2020) Lack of Change in
the Projected Frequency and Persistence of Atmospheric Circulation Types Over Central Europe. Geo-
phys. Res. Lett. 47(9), . https://doi.org/10.1029/2019GL086132
Intergovernmental Panel on Climate Change (2023a) Climate Change 2021 — The Physical Science Basis:
Working Group | Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Cli-
mate Change, 1st ed. Cambridge University Press. https://doi.org/10.1017/9781009157896
Intergovernmental Panel on Climate Change (2023b) Climate Change 2021 — The Physical Science Ba-
sis: Working Group | Contribution to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, 1st ed. Cambridge University Press. https://doi.org/10.1017/9781009157896