She et al.
Operational Oceanography and Earth System Science
Frontiers in Earth Science | www.frontiersin.org
14
February 2020 | Volume 8 | Article 7
the Baltic Sea by multi-model ensemble simulations. Front. Mar. Sci. 5:440.
doi: 10.3389/fmars.2018.00440
Meier, H. E. M., Edman, M., Eilola, K., Placke, M., Neumann, T., and Savchuk, H.
(2019). Assessment of uncertainties in scenario simulations of biogeochemical
cycles in the Baltic Sea. Front. Mar. Sci. 6:46. doi: 10.3389/fmars.2019.00046
Meier, H. E. M., Feistel, R., Piechura, J., Arneborg, L., Burchard, H., Fiekas, V.,
et al. (2006). Ventilation of the Baltic Sea deep water: a brief review of present
knowledge from observations and models. Oceanologia 48, 133-164.
Meier, H. E. M., Rutgersson, A., and Reckermann, M. (2014). Baltic Earth - a new
earth system science program for the Baltic Sea Region. EOS Trans. AGU 95,
109-110. doi: 10.1002/2014E0130001
Meier, H. E. M., Vali, G., Naumann, M., Eilola, K., and Frauen, C. (2018b). Recently
accelerated oxygen consumption rates amplify deoxygenation in the Baltic Sea.
J. Geophys. Res. 123, 3227-3240. doi: 10.1029/2017JC013686
Mohrholz, V. (2018). Major Baltic Inflow Statistics - Revised. Front. Marine Sci.
5:384. doi: 10.3389/fmars.2018.00384
Mohrholz, V., Naumann, M., Nausch, G., Kruger, S., and Grawe, U. (2015). Fresh
oxygen for the Baltic Sea—An exceptional saline inflow after a decade of
stagnation./. Marine Syst. 148,152-166. doi: 10.1016/j.jmarsys.2015.03.005
Neumann, T. (2000). Towards a 3d-ecosystem model of the Baltic Sea. /. Mar. Sys.
25,405-419. doi: 10.1016/S0924-7963(00)00030~0
Omstedt, A., Elken, J., Lehmann, A., Lepparanta, M., Meier, H. E. M.,
Myrberg, K., et al. (2014). Progress in physical oceanography of the
Baltic Sea during the 2003-2014 period. Progress Oceanogr. 128, 139-171.
doi: 10.1016/j.pocean.2014.08.010
Omstedt, A., Elken, J., Lehmann, A., and Piechura, J. (2004). Knowledge of the
Baltic Sea physics gained during the BALTEX and related programmes. Progress
Oceanogr. 63,1-28. doi: 10.1016/j.pocean.2004.09.001
Placke, M., Meier, H. E. M., Grawe, U., Neumann, T., and Liu, Y. (2018). Long-term
mean circulation of the Baltic Sea as represented by various ocean circulation
models. Front. Mar. Sci. 5:287. doi: 10.3389/fmars.2018.00287
Poulsen, J. W., Berg, P., and Raman, K. (2014). “Chapter 3 - Better concurrency and
SIMD on HBM,” in High Performance Parallelism Pearls: Multicore and Many-
core Programming Approaches, eds J. Jeffers and J. Reinders (Morgan Kaufmann
Publishing), 43-67. doi: 10.1016/B978-0-12-802118-7.00003-0
Raschke, E., Meywerk, J., Warrach, K., Andrea, U., Bergstrom, S., Beyrich,
F., et al. (2001). The Baltic Sea Experiment (BALTEX) a European
contribution to the investigation of the energy and water cycle over a large
drainage basin. Bull. Am. Meteorol. Soc. 82, 2389-2413. doi: 10.1175/1520-
0477(2001)082<2389:TBSEBA>2.3.CO;2
Reckermann, M., Langner, J., Omstedt, A., von Storch, H., Keevallik,
S., and Htinicke, B. (2011). BALTEX - An interdisciplinary research
network for the Baltic Sea region. Environ. Res. Lett. 6:045205.
doi: 10.1088/1748-9326/6/4/045205
Reissmann, J. H., Burchard, H., Feistel, R., Hagen, E., Lass, H. U.,
Mohrholz, V., et al. (2009). Vertical mixing in the Baltic Sea and
consequences for eutrophication-A review. Progress Oceanogr. 82, 47-80.
doi: 10.1016/j. pocean .2007.10.004
Rodhe, J., and Winsor, P. (2002). On the influence of the freshwater supply on the
Baltic Sea mean salinity. Tellus A 54, 175-186. doi: 10.3402/tellusa.v54i2.12134
Rodriguez, H., Fisher, E., and Schuurbiers, D. (2013). Integrating science
and society in European Framework Programmes: trends in project-
level solicitations. Res. Policy 42, 1126-1137. doi: 10.1016/j.respol.2013.
02.006
Roiha, P., Siiria S.-M., Haavisto, N., Alenius, P., Westerlund, A., and Purokoski, T.
(2018). Estimating currents from argo trajectories in the bothnian Sea, Baltic
Sea. Front. Mar. Sci. 5:308. doi: 10.3389/fmars.2018.00308
Schimanke, S., and Meier, H. E. M. (2016). Decadal-to-centennial
variability of salinity in the Baltic Sea. J. Climate 29, 7173-7188.
doi: 10.1175/JCLI-D-15-0443.1
Schimanke, S., Meier, H. E. M., Kjellstrom, E., Strandberg, G., and Hordoir,
R. (2012). The climate in the Baltic Sea region during the last millennium
simulated with a regional climate model. Climate Past 8, 1419-1433.
doi: 10.5194/cp-8-1419-2012
Schmale, O., Krause, S., Holtermann, P., Power Guerra, N. C., and Umlauf,
L. (2016). Dense bottom gravity currents and their impact on pelagic
methanotrophy at oxic/anoxic transition zones. Geophys. Res. Lett. 43,
5225-5232. doi: 10.1002/2016GL069032
Schrum, C., Hùbner, U., Jacob, D., and Podzun, R. (2003). A coupled
atmosphere/ice/ocean model for the North Sea and the Baltic Sea. Climate
Dynam. 21,131-151. doi: 10.1007/s00382-003-0322-8
She, J. (2018a). “Emerging needs on operational oceanography to serve sustainable
development in Baltic-North Sea,” in Proceedings of the Eight EuroGOOS
International Conference, edsE. Buch, V. Fernandez, D. Eparkhina, P. Gorringe,
and G. Nolan (Belgium : EuroGOOS), 463-472.
She, J. (2018b). “Assessment of Baltic Sea observations for operational
oceanography,” in Proceedings of the Eight EuroGOOS International Conference,
eds E. Buch, V. Fernandez, D. Eparkhina, P. Gorringe and G. Nolan (Brussels:
EuroGOOS), 79-87.
She, J., Allen, I., Buch, E., Crise, A., Johannessen, J. A., Le Traon, P.-Y., et al. (2016).
Developing European operational oceanography for Blue Growth, climate
change adaptation and mitigation, and ecosystem-based management. Ocean
Sci. 12, 953-976. doi: 10.5194/os-12-953-2016
She, J., and Murawski, J. (2018). “Towards seamless modelling for the Baltic
Sea. Operational Oceanography serving Sustainable Marine Development,”
in Proceedings of the Eight EuroGOOS International Conference, eds E.
Buch, V. Fernandez, D. Eparkhina, P. Gorringe, and G. Nolan (Belgium:
EuroGOOS), 233-241.
She, J., and Nielsen, J. W. (1999). Operational Wave Forecasts Over Baltic
and North Sea. Scientific Report 99-7, Danish Meteorological Institute,
Copenhagen, Denmark.
Siiria, S., Roiha, P., Tuomi, L., Purokoski, T., Haavisto, N., and Alenius,
P. (2018). Applying area-locked, shallow Argo floats in the Baltic Sea
monitoring. J. Operai. Oceanogr. 12, 58-72. doi: 10.1080/1755876X.2018.15
44783
Tian, T., Boberg, F., Christensen, O. B., Christensen, J. H., She, J., and Vihma, T.
(2013). Resolved complex coastlines and land-sea contrasts in a high-resolution
regional climate model: a comparative study using prescribed and modelled
SSTs. Tellus A 65:19951. doi: 10.3402/tellusa.v65i0.19951
Tian, T., Su, T., Boberg, F., Yang, S., and Schmith, T. (2016). Estimating
uncertainty caused by ocean heat transport to the North Sea: experiments
downscaling EC-Earth. Climate Dynam. 46, 99-110. doi: 10.1007/s00382-015-
2571-8
Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank,
A., et al. (2007). “Observations: surface and atmospheric climate change,” in
Climate Change 2007: The Physical Science Basis. Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change, eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis,
K. B. Averyt, M. Tignor, and H. L. Miller (Cambridge: Cambridge University
Press). 235-336.
Tuomi, L., Pettersson, H., and Kahma, K. (1999). Preliminary Results From the
WAM Wave Model Forced by the Mesoscale EUR-HIRLAM Atmospheric Model.
MERI - Report series of the Finnish Institute of Marine Research 40,19-23.
Tuomi, L., She, J., Lorkowski, L, Axell, L., Lagemaa, P., Schwichtenberg, F.,
et al. (2018). “Overview of CMEMS BAL MFC Service and Developments,”
in Proceedings of the Eigth EuroGOOS International Conference, eds E. Buch,
V. Fernandez, D. Eparkhina, P. Gorringe, and G. Nolan (Brussels; Belgium:
EuroGOOS), 261-268.
Umlauf, L., and Arneborg, L. (2009a). Dynamics of rotating shallow gravity
currents passing through a channel. Part I: observation of transverse structure.
J. Phys. Oceanogr. 39, 2385-2401. doi: 10.1175/2009JP04159.1
Umlauf, L., and Arneborg, L. (2009b). Dynamics of rotating shallow gravity
currents passing through a channel. Part II: analysis. /. Phys. Oceanogr. 39,
2402-2416. doi: 10.1175/2009JP04164.1
Van Pham, T., Brauch, J., Dieterich, C., Frueh, B., and Ahrens, B. (2014).
New coupled atmosphere-ocean-ice system COSMO-CLM/NEMO: assessing
air temperature sensitivity over the North and Baltic Seas. Oceanologia 56,
167-189. doi: 10.5697/oc.56-2.167
von Schomberg, R. (2013). “A vision of responsible research and innovation,” in
Responsible Innovation, eds R. Owen, J. Bessant, and M. Heintz (London: John
Wiley), 51-74. doi: 10.1002/9781118551424.ch3
WAMDI (1988). The WAM model - A third generation ocean wave
prediction model. J. Phys. Oceanogr. 18, 1775-1810. doi: 10.1175/1520-
0485(1988)018<1775:TWMTGO>2.0.CO;2
Wang, S., Dieterich, C., Dòscher, R., Hòglund, A., Hordoir, R., Meier, H. E.
M., et al. (2015). Development and evaluation of a new regional coupled