Skip to main content

Full text: Baltic Sea operational oceanography

She et al. 
Operational Oceanography and Earth System Science 
Frontiers in Earth Science | www.frontiersin.org 
14 
February 2020 | Volume 8 | Article 7 
the Baltic Sea by multi-model ensemble simulations. Front. Mar. Sci. 5:440. 
doi: 10.3389/fmars.2018.00440 
Meier, H. E. M., Edman, M., Eilola, K., Placke, M., Neumann, T., and Savchuk, H. 
(2019). Assessment of uncertainties in scenario simulations of biogeochemical 
cycles in the Baltic Sea. Front. Mar. Sci. 6:46. doi: 10.3389/fmars.2019.00046 
Meier, H. E. M., Feistel, R., Piechura, J., Arneborg, L., Burchard, H., Fiekas, V., 
et al. (2006). Ventilation of the Baltic Sea deep water: a brief review of present 
knowledge from observations and models. Oceanologia 48, 133-164. 
Meier, H. E. M., Rutgersson, A., and Reckermann, M. (2014). Baltic Earth - a new 
earth system science program for the Baltic Sea Region. EOS Trans. AGU 95, 
109-110. doi: 10.1002/2014E0130001 
Meier, H. E. M., Vali, G., Naumann, M., Eilola, K., and Frauen, C. (2018b). Recently 
accelerated oxygen consumption rates amplify deoxygenation in the Baltic Sea. 
J. Geophys. Res. 123, 3227-3240. doi: 10.1029/2017JC013686 
Mohrholz, V. (2018). Major Baltic Inflow Statistics - Revised. Front. Marine Sci. 
5:384. doi: 10.3389/fmars.2018.00384 
Mohrholz, V., Naumann, M., Nausch, G., Kruger, S., and Grawe, U. (2015). Fresh 
oxygen for the Baltic Sea—An exceptional saline inflow after a decade of 
stagnation./. Marine Syst. 148,152-166. doi: 10.1016/j.jmarsys.2015.03.005 
Neumann, T. (2000). Towards a 3d-ecosystem model of the Baltic Sea. /. Mar. Sys. 
25,405-419. doi: 10.1016/S0924-7963(00)00030~0 
Omstedt, A., Elken, J., Lehmann, A., Lepparanta, M., Meier, H. E. M., 
Myrberg, K., et al. (2014). Progress in physical oceanography of the 
Baltic Sea during the 2003-2014 period. Progress Oceanogr. 128, 139-171. 
doi: 10.1016/j.pocean.2014.08.010 
Omstedt, A., Elken, J., Lehmann, A., and Piechura, J. (2004). Knowledge of the 
Baltic Sea physics gained during the BALTEX and related programmes. Progress 
Oceanogr. 63,1-28. doi: 10.1016/j.pocean.2004.09.001 
Placke, M., Meier, H. E. M., Grawe, U., Neumann, T., and Liu, Y. (2018). Long-term 
mean circulation of the Baltic Sea as represented by various ocean circulation 
models. Front. Mar. Sci. 5:287. doi: 10.3389/fmars.2018.00287 
Poulsen, J. W., Berg, P., and Raman, K. (2014). “Chapter 3 - Better concurrency and 
SIMD on HBM,” in High Performance Parallelism Pearls: Multicore and Many- 
core Programming Approaches, eds J. Jeffers and J. Reinders (Morgan Kaufmann 
Publishing), 43-67. doi: 10.1016/B978-0-12-802118-7.00003-0 
Raschke, E., Meywerk, J., Warrach, K., Andrea, U., Bergstrom, S., Beyrich, 
F., et al. (2001). The Baltic Sea Experiment (BALTEX) a European 
contribution to the investigation of the energy and water cycle over a large 
drainage basin. Bull. Am. Meteorol. Soc. 82, 2389-2413. doi: 10.1175/1520- 
0477(2001)082<2389:TBSEBA>2.3.CO;2 
Reckermann, M., Langner, J., Omstedt, A., von Storch, H., Keevallik, 
S., and Htinicke, B. (2011). BALTEX - An interdisciplinary research 
network for the Baltic Sea region. Environ. Res. Lett. 6:045205. 
doi: 10.1088/1748-9326/6/4/045205 
Reissmann, J. H., Burchard, H., Feistel, R., Hagen, E., Lass, H. U., 
Mohrholz, V., et al. (2009). Vertical mixing in the Baltic Sea and 
consequences for eutrophication-A review. Progress Oceanogr. 82, 47-80. 
doi: 10.1016/j. pocean .2007.10.004 
Rodhe, J., and Winsor, P. (2002). On the influence of the freshwater supply on the 
Baltic Sea mean salinity. Tellus A 54, 175-186. doi: 10.3402/tellusa.v54i2.12134 
Rodriguez, H., Fisher, E., and Schuurbiers, D. (2013). Integrating science 
and society in European Framework Programmes: trends in project- 
level solicitations. Res. Policy 42, 1126-1137. doi: 10.1016/j.respol.2013. 
02.006 
Roiha, P., Siiria S.-M., Haavisto, N., Alenius, P., Westerlund, A., and Purokoski, T. 
(2018). Estimating currents from argo trajectories in the bothnian Sea, Baltic 
Sea. Front. Mar. Sci. 5:308. doi: 10.3389/fmars.2018.00308 
Schimanke, S., and Meier, H. E. M. (2016). Decadal-to-centennial 
variability of salinity in the Baltic Sea. J. Climate 29, 7173-7188. 
doi: 10.1175/JCLI-D-15-0443.1 
Schimanke, S., Meier, H. E. M., Kjellstrom, E., Strandberg, G., and Hordoir, 
R. (2012). The climate in the Baltic Sea region during the last millennium 
simulated with a regional climate model. Climate Past 8, 1419-1433. 
doi: 10.5194/cp-8-1419-2012 
Schmale, O., Krause, S., Holtermann, P., Power Guerra, N. C., and Umlauf, 
L. (2016). Dense bottom gravity currents and their impact on pelagic 
methanotrophy at oxic/anoxic transition zones. Geophys. Res. Lett. 43, 
5225-5232. doi: 10.1002/2016GL069032 
Schrum, C., Hùbner, U., Jacob, D., and Podzun, R. (2003). A coupled 
atmosphere/ice/ocean model for the North Sea and the Baltic Sea. Climate 
Dynam. 21,131-151. doi: 10.1007/s00382-003-0322-8 
She, J. (2018a). “Emerging needs on operational oceanography to serve sustainable 
development in Baltic-North Sea,” in Proceedings of the Eight EuroGOOS 
International Conference, edsE. Buch, V. Fernandez, D. Eparkhina, P. Gorringe, 
and G. Nolan (Belgium : EuroGOOS), 463-472. 
She, J. (2018b). “Assessment of Baltic Sea observations for operational 
oceanography,” in Proceedings of the Eight EuroGOOS International Conference, 
eds E. Buch, V. Fernandez, D. Eparkhina, P. Gorringe and G. Nolan (Brussels: 
EuroGOOS), 79-87. 
She, J., Allen, I., Buch, E., Crise, A., Johannessen, J. A., Le Traon, P.-Y., et al. (2016). 
Developing European operational oceanography for Blue Growth, climate 
change adaptation and mitigation, and ecosystem-based management. Ocean 
Sci. 12, 953-976. doi: 10.5194/os-12-953-2016 
She, J., and Murawski, J. (2018). “Towards seamless modelling for the Baltic 
Sea. Operational Oceanography serving Sustainable Marine Development,” 
in Proceedings of the Eight EuroGOOS International Conference, eds E. 
Buch, V. Fernandez, D. Eparkhina, P. Gorringe, and G. Nolan (Belgium: 
EuroGOOS), 233-241. 
She, J., and Nielsen, J. W. (1999). Operational Wave Forecasts Over Baltic 
and North Sea. Scientific Report 99-7, Danish Meteorological Institute, 
Copenhagen, Denmark. 
Siiria, S., Roiha, P., Tuomi, L., Purokoski, T., Haavisto, N., and Alenius, 
P. (2018). Applying area-locked, shallow Argo floats in the Baltic Sea 
monitoring. J. Operai. Oceanogr. 12, 58-72. doi: 10.1080/1755876X.2018.15 
44783 
Tian, T., Boberg, F., Christensen, O. B., Christensen, J. H., She, J., and Vihma, T. 
(2013). Resolved complex coastlines and land-sea contrasts in a high-resolution 
regional climate model: a comparative study using prescribed and modelled 
SSTs. Tellus A 65:19951. doi: 10.3402/tellusa.v65i0.19951 
Tian, T., Su, T., Boberg, F., Yang, S., and Schmith, T. (2016). Estimating 
uncertainty caused by ocean heat transport to the North Sea: experiments 
downscaling EC-Earth. Climate Dynam. 46, 99-110. doi: 10.1007/s00382-015- 
2571-8 
Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, 
A., et al. (2007). “Observations: surface and atmospheric climate change,” in 
Climate Change 2007: The Physical Science Basis. Contribution of Working 
Group I to the Fourth Assessment Report of the Intergovernmental Panel on 
Climate Change, eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, 
K. B. Averyt, M. Tignor, and H. L. Miller (Cambridge: Cambridge University 
Press). 235-336. 
Tuomi, L., Pettersson, H., and Kahma, K. (1999). Preliminary Results From the 
WAM Wave Model Forced by the Mesoscale EUR-HIRLAM Atmospheric Model. 
MERI - Report series of the Finnish Institute of Marine Research 40,19-23. 
Tuomi, L., She, J., Lorkowski, L, Axell, L., Lagemaa, P., Schwichtenberg, F., 
et al. (2018). “Overview of CMEMS BAL MFC Service and Developments,” 
in Proceedings of the Eigth EuroGOOS International Conference, eds E. Buch, 
V. Fernandez, D. Eparkhina, P. Gorringe, and G. Nolan (Brussels; Belgium: 
EuroGOOS), 261-268. 
Umlauf, L., and Arneborg, L. (2009a). Dynamics of rotating shallow gravity 
currents passing through a channel. Part I: observation of transverse structure. 
J. Phys. Oceanogr. 39, 2385-2401. doi: 10.1175/2009JP04159.1 
Umlauf, L., and Arneborg, L. (2009b). Dynamics of rotating shallow gravity 
currents passing through a channel. Part II: analysis. /. Phys. Oceanogr. 39, 
2402-2416. doi: 10.1175/2009JP04164.1 
Van Pham, T., Brauch, J., Dieterich, C., Frueh, B., and Ahrens, B. (2014). 
New coupled atmosphere-ocean-ice system COSMO-CLM/NEMO: assessing 
air temperature sensitivity over the North and Baltic Seas. Oceanologia 56, 
167-189. doi: 10.5697/oc.56-2.167 
von Schomberg, R. (2013). “A vision of responsible research and innovation,” in 
Responsible Innovation, eds R. Owen, J. Bessant, and M. Heintz (London: John 
Wiley), 51-74. doi: 10.1002/9781118551424.ch3 
WAMDI (1988). The WAM model - A third generation ocean wave 
prediction model. J. Phys. Oceanogr. 18, 1775-1810. doi: 10.1175/1520- 
0485(1988)018<1775:TWMTGO>2.0.CO;2 
Wang, S., Dieterich, C., Dòscher, R., Hòglund, A., Hordoir, R., Meier, H. E. 
M., et al. (2015). Development and evaluation of a new regional coupled
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.