Skip to main content

Full text: Baltic Sea operational oceanography

She et al. 
Operational Oceanography and Earth System Science 
Frontiers in Earth Science | www.trontiersin.org 
13 
February 2020 | Volume 8 | Article 7 
Syst. for Managing Global & Regional Ecosys. Marine Resch, 1-5. 
doi: 10.1109/BALTIC.2006.7266162 
Büchmann, В., and Söderkvist, J. (2016). Internal variability of a 3-D ocean model. 
Tellus A 68. doi: 10.3402/tellusa.v68.30417 
Burchard, H., and Bolding, K. (2002). GETM A General Estuarine Transport Model. 
Scientific Documentation. Technical Report EUR 20253 EN. Ispra: European 
Commission. Available online at: https://getm.eu/ 
Burchard, H. F., Janssen, K., Bolding, L., and Rennau, H. (2009). Model simulations 
of dense bottom currents in the Western Baltic Sea. Continental Shelf Res. 29, 
205-220. doi: 10.1016/j.csr.2007.09.010 
Cieslikiewicz, W., Connolly, N., Ollier, G., and O’Sullivan, G. (editors.) (2007). 
Proceedings of the EurOCEAN 2004 European Conference on Marine Science & 
Ocean Technology. Published by European Commission, 420. 
Dick, S., Kleine, E., and Müller-Navarra, S. (2001). The Operational Circulation 
Model of BSH (BSH cmod). Model description and validation. Berichte des 
Bundesamtes für Seeschifffahrt und Hydrographie 29/2001,48. 
Dieterich, C., Wang, S., Schimanke, S., Gröger, M., Klein, B., Hordoir, R., et al. 
(2019). Surface heat budget over the north sea in climate change simulations. 
Atmosphere 10:272. doi: 10.3390/atmosl0050272 
Döscher, R., Willen, U., Jones, C., Rutgersson, A., Meier, H. E. M., Hansson, 
U., et al. (2002). The development of the regional coupled ocean-atmosphere 
model RCAO. Boreal Environ. Res. 7,183-192. 
Edman, M., Eilola, K., Almroth-Rosell, E., Meier, H. E. M., Wählström, I., and 
Arneborg, L. (2018). Nutrient retention along the Swedish coastline. Front. 
Marine Sei. 5:415. doi: 10.3389/fmars.2018.00415 
Eilola, K., Gustafson, B. G., Kuznetsov, I., Meier, H. E. M., Neumann, T., Savchuk, 
О. P. (2011). Evaluation of biogeochemical cycles in an ensemble of three 
state-of-the-art numerical models of the Baltic Sea during 1970-2005. /. Marine 
Systems 88, 267-284, doi: 10.1016/j.jmarsys.2011.05.004 
Eilola, K., Meier, H. E. M., and Almroth, E. (2009). On the dynamics of oxygen, 
phosphorus and cyanobacteria in the Baltic Sea; a model study. /. Marine Syst. 
75,163-184. doi: 10.1016/j.jmarsys.2008.08.009 
Ekman, M. (2009). The Changing Level of the Baltic Sea during 300 Years: A 
Clue to Understanding the Earth. Published by the Summer Institute for 
Historical Geophysics. 
Fu, W., She, J., and Dobrynin, M. (2012). A 20-year reanalysis experiment in the 
Baltic Sea using three-dimensional variational (3DVAR) method. Ocean Sei. 8, 
827-844. doi: 10.5194/os-8-827-2012 
Funkquist, L., and Kleine, E. (2007). HIROMB: An Introduction to HIROMB, 
an Operational Baroclinic Model for the Baltic Sea. Report Oceanography, 37. 
Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden. 
Golbeck, I., Izotova, J., Jandt, S., Janssen, F., Lagemaa, P., Brüning, T., et al. 
(2017). Quality Information Document (QUID) Baltic Sea Physical Analysis 
and Forecasting Product BALTICSEA_ANALYSIS_FORECAST_PHY_003_006: 
Issue 4.0. Available online at: http://marine.copernicus.eu/documents/QUID/ 
CMEMS-BAL-QUID-003-006.pdf 
Golbeck, I., Li, X., Janssen, F., Brüning, T., and Nielsen, J. W. (2015). Uncertainty 
estimation for operational ocean forecast products - a multi-model ensemble 
for the North Sea and the Baltic Sea. Ocean Dynam. 65, 1603-1631. 
doi: 10.1007/S10236-015-0897-8 
Gräwe, U., Naumann, M., Mohrholz, V., and Burchard, H. (2015). Anatomizing 
one of the largest saltwater inflows into the В altic S ea in D ecember 2014. /. 
Geophys. Res. 120, 7676-7697. doi: 10.1002/2015JC011269 
Green, J. M., Liljebladh, B., and Omstedt, A. (2006). Physical oceanography and 
water exchange in the Northern Kvark Strait. Continental Shelf Res. 26,721-732. 
doi: 10.1016/j.csr.2006.01.012 
Gröger, M., Arneborg, L., Dieterich, C., Höglund, A., and Meier, H. E. 
M. (2019). Hydrographic changes in the North Sea and Baltic Sea 
projected in an ensemble of climate scenarios downscaled with a coupled 
regional ocean-sea ice-atmosphere model. Climate Dynam. 53, 5945-5966. 
doi: 10.1007/s00382-019-04908-9 
Gröger, M., Maier-Reimer, E., Mikolajewicz, U., Moll, A., and Sein, D. (2013). 
NW European shelf under climate warming: implications for open ocean- 
shelf exchange, primary production, and carbon absorption. Biogeosciences 10, 
3767-3792. doi: 10.5194/bg-10-3767-2013 
Gustafsson, N., Nyberg, L., and Omstedt, A. (1998). Coupling of 
a high-resolution Atmospheric Model and an Ocean Model 
for the Baltic Sea. Monthly Weather Rev. 126, 2822-2846. 
doi: 10.1175/1520-0493(1998) 126 <2822:COAHRA> 2.0.CO;2 
Haapala, J., and Lepparanta, M. (1996). Simulating the Baltic Sea ice 
season with a coupled ice-ocean model. Tellus A 48, 622-643. 
doi: 10.1034/j. 1600-0870.1996.t01-4-00003.x 
Haavisto, N., Tuomi, L., Roiha, P., Siiria, S.-M., Alenius, P., and Purokoski, T. 
(2018). Argo floats as a novel part of the monitoring the hydrography of the 
Bothnian Sea. Front. Mar. Sci. 5:324. doi: 10.3389/fmars.2018.00324 
Hagedorn, R., Lehmann, A., and Jacob, D. (2000). A coupled high resolution 
atmosphere-ocean model for the BALTEX region. Meteorol. Zeitschr. 9, 7-20. 
doi: 10.1127/metz/9/2000/7 
HELCOM (2013). HELCOM Monitoring and Assessment Strategy, 37. Available 
online at: http://www.helcom.fi/Documents/Action%20areas/Monitoring 
%20and%20assessment/Monitoring%20and%20assessment%20strategy/ 
Monitoring%20and%20assessment%20strategy.pdf 
Hill, K. L., Moltmann, T., Proctor, R., and Allen, S. (2009). Australia’s integrated 
marine observing system. Meteorol. Technol. Int. 1,114-120. 
Ho-Hagemann, H. T. M., Groger, M., Rockel, B., Geyer, B., Zahn, M., and Meier, 
H. E. M. (2017). Effects of air-sea coupling over the North Sea and the Baltic 
Sea on simulated summer precipitation over Central Europe. Climate Dynam. 
49,3851-3876. doi: 10.1007/s00382-017-3546-8 
Holtermann, P. L., Prien, R., Naumann, M., Mohrholz, V., and Umlauf, L. (2017). 
Deepwater dynamics and mixing processes during a major inflow event in the 
central Baltic Sea. J. Geophys. Res. 122, 6648-6667. doi: 10.1002/2017JC013050 
Holtermann, P. L., Umlauf, L. (2012). The Baltic Sea tracer release experiment: 
2. Mixing processes. J. Geophys. Res. 117:C01022. doi: 10.1029/2011JC0 
07445 
Holtermann, P. L., Umlauf, L., Tanhua, T., Schmale, O., Rehder, G., Waniek, J. J. 
(2012). The Baltic Sea tracer release experiment: 1. Mixing rates. /. Geophys. 
Res. 117:C01021. doi: 10.1029/2011JC007439 
Hordoir, R., Axell, L., Hoglund, A., Dieterich, C., Fransner, F., Andersson, M. 
(2018). Nemo-Nordic 1.0: a NEMO based ocean model for Baltic & North 
Seas, research and operational applications. Geosci. Model Dev. Discuss. 11, 
2353-2371. doi: 10.5194/gmd-2018-2 
Kniebusch, M., Meier, H. E. M., and Neumann, T. (2019a). Temperature 
variability of the Baltic Sea since 1850 in model simulations and observations 
and attribution to atmospheric forcing. /. Geophys. Res. 124, 4168-4187. 
doi: 10.1029/2018JC013948 
Kniebusch, M., Meier, H. E. M., and Radtke, H. (2019b). Changing salinity 
gradients in the Baltic Sea as a consequence of altered freshwater budgets. 
Geophys. Res. Lett. 46, 9739-9747. doi: 10.1029/2019GL083902 
Larsen, J., Hoyer, J. L., and She, J. (2007). Validation of a hybrid optimal 
interpolation and Kalman filter scheme for sea surface temperature 
assimilation. J. Mar. Sys. 65,122-133. doi: 10.1016/j.jmarsys.2005.09.013 
Le Traon, P.-Y., Reppucci, A., Fanjul, E. A., Aouf, L., Behrens, A., 
Belmonte, M., et al. (2019). From observation to information and 
users: the Copernicus Marine Service perspective. Front. Mar. Sci. 6:234. 
doi: 10.3389/fmars.2019.00234 
Liu, Y., Meier, H. E. M., and Eilola, K. (2017). Nutrient transports in the Baltic Sea 
- results from a 30-year physical-biogeochemical reanalysis. Biogeosciences 14, 
2113-2131. doi: 10.5194/bg-14-2113-2017 
Maar, M., Moller, E. F., Larsen, J., Madsen, K. S., Wan, Z., She, J., et al. (2011). 
Ecosystem modelling across a salinity gradient from the North Sea to the Baltic 
Sea. Ecol. Model. 10:1696-1711. doi: 10.1016/j.ecolmodel.2011.03.006 
Meier, H. E. M. (2005). Modeling the age of Baltic Seawater masses: 
quantification and steady state sensitivity experiments. /. Geophys. Res. 
110:C02006, doi: 10.1029/2004JC002607 
Meier, H. E. M. (2007). Modeling the pathways and ages of inflowing salt- 
and freshwater in the Baltic Sea. Estuarine Coastal Shelf Sci. 744, 717-734. 
doi: 10.1016/j.ecss.2007.05.019 
Meier, H. E. M., Andersson, H. C., Arheimer, B., Blenckner, T., Chubarenko, 
B., Donnelly, C., et al. (2012). Comparing reconstructed past variations 
and future projections of the Baltic Sea ecosystem - first results 
from multi-model ensemble simulations. Environ. Res. Lett. 7:034005. 
doi: 10.1088/1748-9326/7/3/034005 
Meier, H. E. M., Edman, M., Eilola, K., Placke, M., Neumann, T., Andersson, 
H., et al. (2018a). Assessment of eutrophication abatement scenarios for
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.