4
Aas dem Archiv der Deutschen Seekarte — 1903 No, 1
(2)
<>i — P (5 — l sin </ - j cos {h\ + (y—(f ') cos «i}
= Pi f 1 •— 2 e 2 sin) cos h\—Pi y-_ cos «i sin h\
wenn man Größen von der Ordnung e* vernachlässigt.
Wäre die Erde eine Kugel, so würde die Höllenparallaxe gefunden werden durch 2n = Pi<osh\, man
sieht also, daß man den hei weitem größten Teil des Einflusses der sphäroidischen Gestalt der Erde be
rücksichtigt, wenn man sie für die Kugel rechnet, aber die aus dem Jahrbuch entnommene Horizontal-
Aequatoreal-Parallaxe um die Größe * P| e 1 sin vermindert, d. h. man hat:
Ci
(3)
Pi — P,' cos h\ worin
Pi
e- sin (f 2
Das zweite Glied der Formel (2) —P, ?!...5-1 cos cq sin h\ ist zwar auch merklich, ist aber viel kleiner,
als die von o herrührende Verbesserung der Horizontal-Parallaxe und kann in den meisten Fällen vernach
lässigt werden; wo es jedoch merklich sein sollte, kann es nachträglich als Korrektionsglied angebracht
werden. Wenn man Höhenparallaxe und Refraktion getrennt berechnet, so ist es natürlich am bequemsten,
nach dem ersten Teile der Formel (2) zu rechnen und zu diesem Zwecke geben die Tafeln 13 und 14 des
Kaut. Jahfb. die erforderlichen Größen: Verbesserung der Horizontal-Parallaxe und der scheinbaren Höhe.
Die Refraktion wird den in allen nautischen Tafelsammlungen enthaltenen Refraktionstafeln entnommen,
wobei die Korrektionen wegen des Standes der meteorologischen Instrumente (Barometer und freies Thermo
meter) stets zu berücksichtigen sind. Zu beachten ist dabei, daß inan in diese Tabelle nicht mit dem hei
der Parallaxenrechnung zu benutzenden Wert h\ + (<p—r//) cos cii, sondern mit h[ einzugehen hat, weil die
Refraktion von der am Orte gesehenen, nicht aber von der geozentrischen Höbe abhängt. Auch aus diesem
Grunde empfiehlt es sich, die Höhenparallaxe zunächst mit h\ zu berechnen und eventuell zum Schluß eine
kleine Korrektion wegen der Vernachlässigung von (y—</-’) cos ct\ in der Höhe anzubringen, deren Berech
nung nachher noch gezeigt wird.
Man kann auch die Gesamt-Korrektion der scheinbaren Höhen, d. h. die Größe p\—refr, mit der
scheinbaren (Mittelpunkts-) Höhe aus besonderen Tabellen entnehmen, welche sich in vielen der älteren
nautischen Tafelsammlungen finden (z. B. in Breusing: Steuermannskunst, 2. Aufl., 1864, als Tafel 20, in
B ehr mann : Nautische, astronomische etc. Tafeln, 1877, als Tafel 54). Bei Benutzung dieser sehr bequemen
Tafeln hat man zu beachten, daß die Korrektionen der Refraktion wegen Thermometer- und Barometerstand
an die Tafelgrößen mit umgekehrten Vorzeichen angebracht werden müssen, weil ja die Refraktion von der
Höhenparallaxe subtrahiert ist.
Eine Folge der sphäroidischen Gestalt der Erde ist auch das Auftreten einer kleinen Parallaxe im
Azimut (der Seitenparallaxe), welche nur für den Mond merklich ist. Sie wird gefunden durch den Ausdruck:
. P; (</—<i')smui
^ mr.7 cos h\
In der Höhe h\ wird demnach 5« durch den Bogen
14)
A a cos h\
Pi ly—(p')sinai
3437 .'7
dargestellt.
Für die Sonne und die Planeten sind Höhenparallaxe und Refraktion getrennt den dafür entworfenen
Tabellen zu entnehmen. (Naut. Jahrb. Taf. 10, 11 und für Refraktion Taf. 7a, b, c und event. Tafel 8).
Berechnung der wahren Distanz D. Diese zerfällt in drei Teile: die Ermittelung des Winkels
SZM = A, diejenige von D, bei welcher sich die Winkel S C M 0 Z = M a und M 0 S o Z — S a nebenher er
geben und die Anbringung der kleinen Korrektionen.