14
Aus dem Archiv der Deutschen Seewarte — 1902 No. 4 —
Fig. 2.
liehen Höhe von 30 mm der Spiegel, in linearem Maasse an der oberen Kante 0.09, 0.17 resp. 0.26 mm, also
Grössen, die der Mechaniker stets innehalten kann und welche bei der oben gegebenen Methode leicht er
kannt werden.
Kleiner Spiegel.
Der kleine Spiegel steht ebenfalls senkrecht auf der Ebene des Sextantenkörpers, ist aber unbeweglich.
Es ist nur seine untere Hälfte belegt, die obere ist unbelegt, durch welche man direkt ein Objekt ein-
visiren kann. Die Dimensionen dieses Spiegels sind gewöhnlich etwa 30 mm in Höhe und 20 mm in Breite.
Seine Flächen sollen eben sein, damit nicht unscharfe Bilder entstehen. Da die Strahlen, welche von dem
grossen Spiegel zurückgeworfen werden, immer unter demselben Winkel auf den kleinen Spiegel fallen, so
wird auch der Fehler, welcher von der prismatischen Gestalt des letzteren herrührt, auf alle beobachteten
Winkel den gleichen Einfluss haben. Die Grösse dieses Fehlers hängt von dem Einfalls- und Austrittswinkel
der Lichtstrahlen her, die gewöhnlich etwa 15° betragen. Bei diesem Winkel aber ist der Fehler, der bei
einer Messung entsteht, nur ’4 der Neigung der Spiegelflächen, so dass selbst eine Neigung von 30" nur
einen Fehler von 6" bedingen würde. Es wird daher bei Verwendung eines kleinen Spiegels von prisma
tischer Gestalt nur der Indexfehler um eine konstante Grösse geändert und fällt also mit dessen Bestimmung
aus den Beobachtungen heraus. Dagegen entstehen zwei Bilder des Gegenstandes, wodurch die Ränder un
deutlich erscheinen, was bei kleineren Fehlern allerdings kaum irgend merklich störend wirkt, aber bei
grösseren doch zu Ungenauigkeiten in den Messungen führen kann. Es ist daher darauf zu sehen, dass
der kleine Spiegel eben und nicht stark prismatisch ist.
Verbindet man die Mittelpunkte des grossen und kleinen Spiegels miteinander,
so nennt man den Winkel, welchen diese Verbindungslinie mit der Normalen auf
dem kleinen Spiegel bildet, den Schärfungswinkel. Dieser Winkel ist für jedes
Instrument eine konstante Grösse. Jeder Lichtstrahl, der vom grossen Spiegel nach
dem kleinen reflektirt und von da nach dem Fernrohre (Auge) geworfen wird, trifft
den kleinen Spiegel unter diesem Winkel ß und verlässt ihn nach dem Reflexions
gesetze unter dem gleichen Winkel; ß ist daher auch der Winkel, welchen die
Fernrohraxe mit der Normalen des kleinen Spiegels bildet. Würden die Spiegel
und das Fernrohr keine Dicke und Breite haben, so könnte man ein ideales System
mit ß = 0° konstruiren, mit welchem es also möglich wäre, Winkel bis zu 180°
zu messen. Da dies unmöglich ist, so wird die Grösse des Winkels so gewählt,
V dass man noch möglichst grosse Winkel messen kann. Aus konstruktiven Gründen
ist ß nicht kleiner als etwa 14° möglich. Bei den meisten Instrumenten findet man ß etwa 15°, doch
kommen auch Winkel von 17° öfter vor; grössere Winkel als 18° scheinen jedoch nicht verwendet zu werden.
Will man erreichen, dass noch möglichst grosse Winkel gemessen werden können, was für manche Zwecke
erwünscht ist, so muss man das Fernrohr möglichst nahe an den grossen Spiegel bringen und den kleinen
Spiegel weit aus dem Kreissektor des Sextantenkörpers bringen. Auf diese Weise sind Instrumente her
gestellt worden, die noch Winkel bis zu 145° zu messen erlauben.
Der Winkel ß kann angenähert direkt am Instrument gemessen werden. Zur genaueren Bestimmung
kann man sich der folgenden Methode bedienen. Man stelle die Alhidade auf ihre Extremstellung in der
Nähe von 140°, dann ist der grosse Spiegel so nahe rechtwinklig auf den kleinen gerichtet, dass man im
Fernrohr ein vom kleinen Spiegel einmal reflektirtes Bild eines in grösserer Entfernung hinter dem grossen
Spiegel liegenden Objektes sehen kann. Die von diesem Objekt kommenden Strahlen gehen zu beiden Seiten
am grossen Spiegel vorbei, ehe sie auf den kleinen Spiegel treffen. Können diese Lichtstrahlen, z. B. bei
Oktanten, nicht genügend vorbei, so muss der grosse Spiegel für diese Messung ganz abgenommen werden.
Die Bestimmung von ß geschieht nun in der Weise, dass man den Sextanten horizontal auf einem Stativ be
festigt und ihn so dreht, dass man ein scharf begrenztes einmal reflektirtes Bild A {Fig. 3), das hinter dem
grossen Spiegel liegt, im kleinen Spiegel erblickt, während man gleich
zeitig im Fernrohr F durch den oberen unbelegten Tlieil des kleinen
Spiegels hindurchsehend ein zweites Objekt B direkt sieht. Dann ist
der Winkel BsA = 180—2ß. Um diesen Winkel mit dem Sextanten
messen zu können, muss man noch eine Zwischenrichtung C einschalten
- v» und dann die beiden Winkel BsC und Cs.4 messen.
' %
Fig. 3.
F